Improvement of prediction for a larger number of steps in discrete stationary processes
Applications of Mathematics, Tome 27 (1982) no. 2, pp. 118-127.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $\{W_t\}=\{(X'_{t'}, Y'_t)'\}$ be vector ARMA $(m,n)$ processes. Denote by $\hat{X}_t(a)$ the predictor of $X_t$ based on $X_{t-a}, X_{t-a-1}, \ldots$ and by $\hat{X}_t(a,b)$ the predictor of $X_t$ based on $X_{t-a}, X_{t-a-1}, \ldots, Y_{t-b},Y_{t-b-1}, \ldots$. The accuracy of the predictors is measured by $\Delta_X(a)=\text{E}[X_t-\hat{X}_t(a)][X_t-\hat{X}_t(a)]'$ and $\Delta_X(a,b)=\text{E}[X_t-\hat{X}_t(a,b)][X_t-\hat{X}_t(a,b)]'$. A general sufficient condition for the equality $\Delta_X(a)=\Delta_X(a,a)]$ is given in the paper and it is shown that the equality $\Delta_X(1)=\Delta_X(1,1)]$ implies $\Delta_X(a)=\Delta_X(a,a)]$ for all natural numbers $a$.
DOI : 10.21136/AM.1982.103952
Classification : 60G10, 60G25, 62M20
Keywords: improvement of prediction; discrete stationary process
@article{10_21136_AM_1982_103952,
     author = {Cipra, Tom\'a\v{s}},
     title = {Improvement of prediction for a larger number of steps in discrete stationary processes},
     journal = {Applications of Mathematics},
     pages = {118--127},
     publisher = {mathdoc},
     volume = {27},
     number = {2},
     year = {1982},
     doi = {10.21136/AM.1982.103952},
     mrnumber = {0651049},
     zbl = {0489.60047},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/AM.1982.103952/}
}
TY  - JOUR
AU  - Cipra, Tomáš
TI  - Improvement of prediction for a larger number of steps in discrete stationary processes
JO  - Applications of Mathematics
PY  - 1982
SP  - 118
EP  - 127
VL  - 27
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/AM.1982.103952/
DO  - 10.21136/AM.1982.103952
LA  - en
ID  - 10_21136_AM_1982_103952
ER  - 
%0 Journal Article
%A Cipra, Tomáš
%T Improvement of prediction for a larger number of steps in discrete stationary processes
%J Applications of Mathematics
%D 1982
%P 118-127
%V 27
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/AM.1982.103952/
%R 10.21136/AM.1982.103952
%G en
%F 10_21136_AM_1982_103952
Cipra, Tomáš. Improvement of prediction for a larger number of steps in discrete stationary processes. Applications of Mathematics, Tome 27 (1982) no. 2, pp. 118-127. doi : 10.21136/AM.1982.103952. http://geodesic.mathdoc.fr/articles/10.21136/AM.1982.103952/

Cité par Sources :