An equilibrium finite element method in three-dimensional elasticity
Applications of Mathematics, Tome 27 (1982) no. 1, pp. 46-75.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

The tetrahedral stress element is introduced and two different types of a finite piecewise linear approximation of the dual elasticity problem are investigated on a polyhedral domain. Fot both types a priori error estimates $O(h^2)$ in $L_2$-norm and $O(h^{1/2})$ in $L_\infty$-norm are established, provided the solution is smooth enough. These estimates are based on the fact that for any polyhedron there exists a strongly regular family of decomprositions into tetrahedra, which is proved in the paper, too.
DOI : 10.21136/AM.1982.103944
Classification : 65N15, 65N30, 73K25, 74B99, 74H99, 74P99, 74S05
Keywords: composite tetrahedral equilibrium element; two types of finite approximation; three-dimensional problem; polyhedral domain; Castigliano-Menabrea’s principle; minimum complementary energy; a priori error estimates; existence of strongly regular family of decompositions
@article{10_21136_AM_1982_103944,
     author = {K\v{r}{\'\i}\v{z}ek, Michal},
     title = {An equilibrium finite element method in three-dimensional elasticity},
     journal = {Applications of Mathematics},
     pages = {46--75},
     publisher = {mathdoc},
     volume = {27},
     number = {1},
     year = {1982},
     doi = {10.21136/AM.1982.103944},
     mrnumber = {0640139},
     zbl = {0488.73072},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/AM.1982.103944/}
}
TY  - JOUR
AU  - Křížek, Michal
TI  - An equilibrium finite element method in three-dimensional elasticity
JO  - Applications of Mathematics
PY  - 1982
SP  - 46
EP  - 75
VL  - 27
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/AM.1982.103944/
DO  - 10.21136/AM.1982.103944
LA  - en
ID  - 10_21136_AM_1982_103944
ER  - 
%0 Journal Article
%A Křížek, Michal
%T An equilibrium finite element method in three-dimensional elasticity
%J Applications of Mathematics
%D 1982
%P 46-75
%V 27
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/AM.1982.103944/
%R 10.21136/AM.1982.103944
%G en
%F 10_21136_AM_1982_103944
Křížek, Michal. An equilibrium finite element method in three-dimensional elasticity. Applications of Mathematics, Tome 27 (1982) no. 1, pp. 46-75. doi : 10.21136/AM.1982.103944. http://geodesic.mathdoc.fr/articles/10.21136/AM.1982.103944/

Cité par Sources :