A finite element analysis for elastoplastic bodies obeying Hencky's law
Applications of Mathematics, Tome 26 (1981) no. 6, pp. 449-461 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Using the Haar-Kármán principle, approximate solutions of the basic boundary value problems are proposed and studied, which consist of piecewise linear stress fields on composite triangles. The torsion problem is solved in an analogous manner. Some convergence results are proven.
Using the Haar-Kármán principle, approximate solutions of the basic boundary value problems are proposed and studied, which consist of piecewise linear stress fields on composite triangles. The torsion problem is solved in an analogous manner. Some convergence results are proven.
DOI : 10.21136/AM.1981.103935
Classification : 46E35, 49J40, 49M15, 49S05, 65N30, 73E99, 73K25, 74G30, 74H25, 74S05
Keywords: Haar-Kármán principle; basic boundary value problems; piecewise linear stress fields; composite triangles; torsion problem
@article{10_21136_AM_1981_103935,
     author = {Hlav\'a\v{c}ek, Ivan},
     title = {A finite element analysis for elastoplastic bodies obeying {Hencky's} law},
     journal = {Applications of Mathematics},
     pages = {449--461},
     year = {1981},
     volume = {26},
     number = {6},
     doi = {10.21136/AM.1981.103935},
     mrnumber = {0634282},
     zbl = {0467.73096},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/AM.1981.103935/}
}
TY  - JOUR
AU  - Hlaváček, Ivan
TI  - A finite element analysis for elastoplastic bodies obeying Hencky's law
JO  - Applications of Mathematics
PY  - 1981
SP  - 449
EP  - 461
VL  - 26
IS  - 6
UR  - http://geodesic.mathdoc.fr/articles/10.21136/AM.1981.103935/
DO  - 10.21136/AM.1981.103935
LA  - en
ID  - 10_21136_AM_1981_103935
ER  - 
%0 Journal Article
%A Hlaváček, Ivan
%T A finite element analysis for elastoplastic bodies obeying Hencky's law
%J Applications of Mathematics
%D 1981
%P 449-461
%V 26
%N 6
%U http://geodesic.mathdoc.fr/articles/10.21136/AM.1981.103935/
%R 10.21136/AM.1981.103935
%G en
%F 10_21136_AM_1981_103935
Hlaváček, Ivan. A finite element analysis for elastoplastic bodies obeying Hencky's law. Applications of Mathematics, Tome 26 (1981) no. 6, pp. 449-461. doi: 10.21136/AM.1981.103935

[1] G. Duvaut J. L. Lions: Les inéquations en mécanique et en physique. Paris, Dunod 1972. | MR

[2] B. Mercier: Sur la théorie et l'analyse numérique de problèmes de plasticité. Thesis, Université Paris VI, 1977. | MR

[3] P. Suquet: Existence and regularity of solutions for plasticity problems. (Preprint). Proc. IUTAM Congress in Evanston - 1978.

[4] R. Falk B. Mercier: Estimation d'erreur en élastoplasticité. C. R. Acad. Sc. Paris, 282, A, (1976), 645-648. | MR

[5] R. Falk B. Mercier: Error estimates for elasto-plastic problems. R.A.I.R.O. Anal. Numer., 11 (1977), 135-144. | MR

[6] V. B. Watwood B. J. Hartz: An equilibrium stress field model for finite element solution of two-dimensionalelastostatic problems. Inter. J. Solids Structures 4, (1968), 857-873.

[7] C. Johnson B. Mercier: Some equilibrium finite element methods for two-dimensional elasticity problems. Numer. Math. 30 (1978), 103-116. | DOI | MR

[8] J. Céa: Optimisation, théorie et algorithmes. Dunod, Paris 1971. | MR

[9] F. Brezzi W. W. Hager P. A. Raviart: Error estimates for the finite element solution of variational inequalities. Part I. Primal Theory. Numer. Math. 28, (1977), 431 - 443. | DOI | MR

[10] M. Křížek: An equilibrium finite element method in three-dimensional elasticity. Apl. Mat. 27 (1982). | MR

[11] P. A. Raviart J. M. Thomas: A mixed finite element method for 2-nd order elliptic problems. Math. Aspects of Fin. El. Meth. Rome 1975, Springer-Verlag 1977, 292-315. | MR

[12] H. Brezis K. Stampacchia: Sur la regularité de la solution d'inéquations elliptiques. Bull. Soc. Math. France 96, (1968), 153-180. | DOI | MR

Cité par Sources :