Mathematical study of rotational incompressible non-viscous flows through multiply connected domains
Applications of Mathematics, Tome 26 (1981) no. 5, pp. 345-364 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The paper is devoted to the study of the boundary value problem for an elliptic quasilinear second-order partial differential equation in a multiply connected, bounded plane domain under the assumption that the Dirichlet boundary value conditions on the separate components of the boundary are given up to additive constants. These constants together with the solution of the equation considered are to be determined so as to fulfil the so called trainling conditions. The results have immediate applications in the investigation of the rotational flow round groups of profiles or cascades of profiles.
The paper is devoted to the study of the boundary value problem for an elliptic quasilinear second-order partial differential equation in a multiply connected, bounded plane domain under the assumption that the Dirichlet boundary value conditions on the separate components of the boundary are given up to additive constants. These constants together with the solution of the equation considered are to be determined so as to fulfil the so called trainling conditions. The results have immediate applications in the investigation of the rotational flow round groups of profiles or cascades of profiles.
DOI : 10.21136/AM.1981.103924
Classification : 35J65, 35Q20, 76B10, 76C99, 76U05
Keywords: multiply connected, bounded plane domain; Dirichlet boundary value conditions; trailing conditions; groups of profiles or cascades of profiles
@article{10_21136_AM_1981_103924,
     author = {Feistauer, Miloslav},
     title = {Mathematical study of rotational incompressible non-viscous flows through multiply connected domains},
     journal = {Applications of Mathematics},
     pages = {345--364},
     year = {1981},
     volume = {26},
     number = {5},
     doi = {10.21136/AM.1981.103924},
     mrnumber = {0631753},
     zbl = {0486.76025},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/AM.1981.103924/}
}
TY  - JOUR
AU  - Feistauer, Miloslav
TI  - Mathematical study of rotational incompressible non-viscous flows through multiply connected domains
JO  - Applications of Mathematics
PY  - 1981
SP  - 345
EP  - 364
VL  - 26
IS  - 5
UR  - http://geodesic.mathdoc.fr/articles/10.21136/AM.1981.103924/
DO  - 10.21136/AM.1981.103924
LA  - en
ID  - 10_21136_AM_1981_103924
ER  - 
%0 Journal Article
%A Feistauer, Miloslav
%T Mathematical study of rotational incompressible non-viscous flows through multiply connected domains
%J Applications of Mathematics
%D 1981
%P 345-364
%V 26
%N 5
%U http://geodesic.mathdoc.fr/articles/10.21136/AM.1981.103924/
%R 10.21136/AM.1981.103924
%G en
%F 10_21136_AM_1981_103924
Feistauer, Miloslav. Mathematical study of rotational incompressible non-viscous flows through multiply connected domains. Applications of Mathematics, Tome 26 (1981) no. 5, pp. 345-364. doi: 10.21136/AM.1981.103924

[1] Г. В. Алексеев: Об исчезающей вязкости в двумерных стационарных задачах гидродинамики несжимаемой жидкости. Динамика сплошной среды, Вып. 10, Новосибирск, 1972. | Zbl

[2] L. Bers F. John M. Schechter: Partial differential equations. Interscience publishers, New York-London -Sydney, 1964. | MR

[3] R. Courant: Partial differential equations. New York-London, 1962. | Zbl

[4] M. Feistauer: Some cases of numerical solution of differential equations describing the vortex-flow through three-dimensional axially-symmetric channels. Apl. mat. 16 (1971), 265-288. | MR | Zbl

[5] M. Feistauer J. Polášek: The calculation of axially-symmetric stream fields. Proceedings of the Hydro-Turbo Conference 74, Luhačovice 1974 (in Czech).

[6] M. Feistauer: On two-dimensional and three-dimensional axially symmetric rotational flows of an ideal incompressible fluid. Apl. mat. 22(1977), 199-214. | MR | Zbl

[7] M. Feistauer: Solution of elliptic problem with not fully specified Dirichlet boundary value conditions and its application in hydrodynamics. Apl. mat. 24 (1979), 67-74. | MR | Zbl

[8] Б. Г. Гуров: Существование и единственность установившихся непотенциальных течений идеальной жидкости в плоских каналах. Численные методы механики сплошной среды, Том 1, № 3, Новосибирск, 1970. | Zbl

[9] Б. Г. Гуров H. H. Яненко И. К. Яушев: Численный расчет непотенциальных течений идеальной жидкости в плоских каналах. Численные методы механики сплошной среды, Том 2, № 1, Новосибирск, 1971. | Zbl

[10] K. Jacob: Berechnung der inkompressiblen Potentialströmung für Einzel- und Gitterprofile nach einer Variante des Martensens-Verfahrens. Bericht 63 RO 2 der Aerodynamischen Versuchsanstalt Göttingen, 1963.

[11] О. А. Ладыженская H. H. Уралъцева: Линейные и квазилинейные уравнения эллиптического типа. Наука, Москва, 1973. | Zbl

[12] Л. А. Люстерник В. И. Соболев: Элементы функционального анализа. Наука, Москва, 1965. | Zbl

[13] E. Martensen: Berechnung der Druckverteilung an Gitterprofilen in ebener Potentialströmung mit einer Fredholmschen Integralgleichung. Arch. Rat. Mech. Anal. 3 (1959), 253-270. | MR | Zbl

[14] В. В. Рагулин: Об одной постановке задачи протекания идеальной жидкости. Сборник ,,Некоторые проблемы математики и механики", Динамика сплошной среды, вып. 33, Новосибирск, 1978. | Zbl

[15] J. Polášek Z. Vlášek: Berechnung der ebenen Potentialströmung von rotierenden radialen Profilgittern. Apl. mat. 17 (1972), 295-308. | MR

Cité par Sources :