Duality in the obstacle and unilateral problem for the biharmonic operator
Applications of Mathematics, Tome 26 (1981) no. 4, pp. 291-303
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
The paper presents a problem of duality for the obstacle and unilateral biharmonic problem (the equilibrium of a thin plate with an obstacle inside the domain or on the boundary). The dual variational inequality is derived by introducing polar functions.
The paper presents a problem of duality for the obstacle and unilateral biharmonic problem (the equilibrium of a thin plate with an obstacle inside the domain or on the boundary). The dual variational inequality is derived by introducing polar functions.
DOI :
10.21136/AM.1981.103918
Classification :
31A30, 35J35, 35J85, 49A29, 49J40, 73K10, 74K20
Keywords: obstacle and unilateral problem; biharmonic operator; dual variational inequality; polar functions
Keywords: obstacle and unilateral problem; biharmonic operator; dual variational inequality; polar functions
@article{10_21136_AM_1981_103918,
author = {Lov{\'\i}\v{s}ek, J\'an},
title = {Duality in the obstacle and unilateral problem for the biharmonic operator},
journal = {Applications of Mathematics},
pages = {291--303},
year = {1981},
volume = {26},
number = {4},
doi = {10.21136/AM.1981.103918},
mrnumber = {0623507},
zbl = {0468.49005},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/AM.1981.103918/}
}
TY - JOUR AU - Lovíšek, Ján TI - Duality in the obstacle and unilateral problem for the biharmonic operator JO - Applications of Mathematics PY - 1981 SP - 291 EP - 303 VL - 26 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.21136/AM.1981.103918/ DO - 10.21136/AM.1981.103918 LA - en ID - 10_21136_AM_1981_103918 ER -
Lovíšek, Ján. Duality in the obstacle and unilateral problem for the biharmonic operator. Applications of Mathematics, Tome 26 (1981) no. 4, pp. 291-303. doi: 10.21136/AM.1981.103918
[1] J. Cea: Optimisation, théorie et algorithmes. Dunod Paris, 1971. | MR | Zbl
[2] R. Glowinski J. L. Lions, Trémolièrs: Analyse numérique des inéquations variationnelles. Tome 1, 2, Dunod Paris, 1976. | MR
[3] I. Ekeland R. Temam: Analyse convexe et problèmes variationnels. Dunod Paris, 1974. | MR
[4] J. L. Lions: Quelques méthodes de résolution des problèmes aux limites non linéairs. Dunod Paris, 1969. | MR
[5] V. Mosco: Dual variational inequalities. Jour. of Math., Anal. and Appl. 40, 202-206 (1972). | DOI | MR | Zbl
[6] J. Nečas: Les méthodes directes en théorie des équations elliptiques. Academia Prague, 1967. | MR
Cité par Sources :