Estimates of reliability for the normal distribution
Applications of Mathematics, Tome 25 (1980) no. 6, pp. 432-444.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

The minimum variance unbiased, the maximum likelihood, the Bayes, and the naive estimates of the reliability function of a normal distribution are studied. Their asymptotic normality is proved and asymptotic expansions for both the expectation and the mean squared error are derived. The estimates are then compared using the concept of deficiency. In the end an extensive Monte Carlo study of the estimates in small samples is given.
DOI : 10.21136/AM.1980.103882
Classification : 62F10, 62F12, 62F15, 62N05, 65C05
Keywords: estimates of reliability; normal distribution; minimum variance unbiased; maximum likelihood; reliability function
@article{10_21136_AM_1980_103882,
     author = {Hurt, Jan},
     title = {Estimates of reliability for the normal distribution},
     journal = {Applications of Mathematics},
     pages = {432--444},
     publisher = {mathdoc},
     volume = {25},
     number = {6},
     year = {1980},
     doi = {10.21136/AM.1980.103882},
     mrnumber = {0596850},
     zbl = {0467.62027},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/AM.1980.103882/}
}
TY  - JOUR
AU  - Hurt, Jan
TI  - Estimates of reliability for the normal distribution
JO  - Applications of Mathematics
PY  - 1980
SP  - 432
EP  - 444
VL  - 25
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/AM.1980.103882/
DO  - 10.21136/AM.1980.103882
LA  - en
ID  - 10_21136_AM_1980_103882
ER  - 
%0 Journal Article
%A Hurt, Jan
%T Estimates of reliability for the normal distribution
%J Applications of Mathematics
%D 1980
%P 432-444
%V 25
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/AM.1980.103882/
%R 10.21136/AM.1980.103882
%G en
%F 10_21136_AM_1980_103882
Hurt, Jan. Estimates of reliability for the normal distribution. Applications of Mathematics, Tome 25 (1980) no. 6, pp. 432-444. doi : 10.21136/AM.1980.103882. http://geodesic.mathdoc.fr/articles/10.21136/AM.1980.103882/

Cité par Sources :