New method for computation of discrete spectrum of radical Schrödinger operator
Applications of Mathematics, Tome 25 (1980) no. 5, pp. 358-372.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

A new method for computation of eigenvalues of the radial Schrödinger operator $-d^2/dx^2+v(x), x\geq 0$ is presented. The potential $v(x)$ is assumed to behave as $x^{-2+\epsilon}$ if $x\rightarrow 0_+$ and as $x^{-2-\epsilon}$ if $x\rightarrow +\infty, \epsilon \geq 0$. The Schrödinger equation is transformed to a non-linear differential equation of the first order for a function $z(x,\aleph)$. It is shown that the eigenvalues are the discontinuity points of the function $z(\infty, \aleph)$. Moreover, it is shown how to obtain an arbitrarily accurate approximation of eigenvalues. The method seems to be much more economical in comparison with other known methods used in numerical computations on computers.
DOI : 10.21136/AM.1980.103870
Classification : 34B25, 34L99, 65L15, 81C05, 81Q10
Keywords: computation of discrete spectrum; quantum mechanical problem
@article{10_21136_AM_1980_103870,
     author = {\'Ulehla, Ivan and Havl{\'\i}\v{c}ek, Miloslav},
     title = {New method for computation of discrete spectrum of radical {Schr\"odinger} operator},
     journal = {Applications of Mathematics},
     pages = {358--372},
     publisher = {mathdoc},
     volume = {25},
     number = {5},
     year = {1980},
     doi = {10.21136/AM.1980.103870},
     mrnumber = {0590489},
     zbl = {0447.34025},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/AM.1980.103870/}
}
TY  - JOUR
AU  - Úlehla, Ivan
AU  - Havlíček, Miloslav
TI  - New method for computation of discrete spectrum of radical Schrödinger operator
JO  - Applications of Mathematics
PY  - 1980
SP  - 358
EP  - 372
VL  - 25
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/AM.1980.103870/
DO  - 10.21136/AM.1980.103870
LA  - en
ID  - 10_21136_AM_1980_103870
ER  - 
%0 Journal Article
%A Úlehla, Ivan
%A Havlíček, Miloslav
%T New method for computation of discrete spectrum of radical Schrödinger operator
%J Applications of Mathematics
%D 1980
%P 358-372
%V 25
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/AM.1980.103870/
%R 10.21136/AM.1980.103870
%G en
%F 10_21136_AM_1980_103870
Úlehla, Ivan; Havlíček, Miloslav. New method for computation of discrete spectrum of radical Schrödinger operator. Applications of Mathematics, Tome 25 (1980) no. 5, pp. 358-372. doi : 10.21136/AM.1980.103870. http://geodesic.mathdoc.fr/articles/10.21136/AM.1980.103870/

Cité par Sources :