A note on states of von Neumann algebras
Applications of Mathematics, Tome 24 (1979) no. 3, pp. 199-200 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The author proves that on a von Neumann albebra (possibly of uncountable cardinality) there exists a family of states having mutually orthogonal supports (projections) converging to the identity operator.
The author proves that on a von Neumann albebra (possibly of uncountable cardinality) there exists a family of states having mutually orthogonal supports (projections) converging to the identity operator.
DOI : 10.21136/AM.1979.103796
Classification : 46L30, 46L45, 46L60, 81T05
Keywords: states of von Neumann algebras; projections; direct sum decomposition; quantum field theory
@article{10_21136_AM_1979_103796,
     author = {Thaheem, A. B.},
     title = {A note on states of von {Neumann} algebras},
     journal = {Applications of Mathematics},
     pages = {199--200},
     year = {1979},
     volume = {24},
     number = {3},
     doi = {10.21136/AM.1979.103796},
     mrnumber = {0530907},
     zbl = {0427.46045},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/AM.1979.103796/}
}
TY  - JOUR
AU  - Thaheem, A. B.
TI  - A note on states of von Neumann algebras
JO  - Applications of Mathematics
PY  - 1979
SP  - 199
EP  - 200
VL  - 24
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.21136/AM.1979.103796/
DO  - 10.21136/AM.1979.103796
LA  - en
ID  - 10_21136_AM_1979_103796
ER  - 
%0 Journal Article
%A Thaheem, A. B.
%T A note on states of von Neumann algebras
%J Applications of Mathematics
%D 1979
%P 199-200
%V 24
%N 3
%U http://geodesic.mathdoc.fr/articles/10.21136/AM.1979.103796/
%R 10.21136/AM.1979.103796
%G en
%F 10_21136_AM_1979_103796
Thaheem, A. B. A note on states of von Neumann algebras. Applications of Mathematics, Tome 24 (1979) no. 3, pp. 199-200. doi: 10.21136/AM.1979.103796

[1 ] S. Sakai: $C^*$-algebras and $W^*$-algebras. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 60. Springer-Verlag, Berlin, 1971. | MR | Zbl

Cité par Sources :