A paradox in the theory of linear elasticity
Applications of Mathematics, Tome 21 (1976) no. 6, pp. 431-433.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let us have the system of partial differential equations of the linear elasticity. We show that the solution of this system with a bounded boundary condition is not generally bounded (i.e., the displacement vector is not bounded). This example is a modification of that given by E. De Giorgi [1].
DOI : 10.21136/AM.1976.103667
Classification : 74E05
Keywords: nonhomogeneous linear elastic medium
@article{10_21136_AM_1976_103667,
     author = {Ne\v{c}as, Jind\v{r}ich and \v{S}t{\'\i}pl, Milo\v{s}},
     title = {A paradox in the theory of linear elasticity},
     journal = {Applications of Mathematics},
     pages = {431--433},
     publisher = {mathdoc},
     volume = {21},
     number = {6},
     year = {1976},
     doi = {10.21136/AM.1976.103667},
     mrnumber = {0423941},
     zbl = {0398.73013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/AM.1976.103667/}
}
TY  - JOUR
AU  - Nečas, Jindřich
AU  - Štípl, Miloš
TI  - A paradox in the theory of linear elasticity
JO  - Applications of Mathematics
PY  - 1976
SP  - 431
EP  - 433
VL  - 21
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/AM.1976.103667/
DO  - 10.21136/AM.1976.103667
LA  - en
ID  - 10_21136_AM_1976_103667
ER  - 
%0 Journal Article
%A Nečas, Jindřich
%A Štípl, Miloš
%T A paradox in the theory of linear elasticity
%J Applications of Mathematics
%D 1976
%P 431-433
%V 21
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/AM.1976.103667/
%R 10.21136/AM.1976.103667
%G en
%F 10_21136_AM_1976_103667
Nečas, Jindřich; Štípl, Miloš. A paradox in the theory of linear elasticity. Applications of Mathematics, Tome 21 (1976) no. 6, pp. 431-433. doi : 10.21136/AM.1976.103667. http://geodesic.mathdoc.fr/articles/10.21136/AM.1976.103667/

Cité par Sources :