System of linear equations
Applications of Mathematics, Tome 21 (1976) no. 6, pp. 424-430.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

The paper describes a method of solving the system of linear algebraic equations with a real rectangular matrix. The method is based on the use of the Gram-Schmidt orthogonalization. The solution is found in the form $x=x_p+y$, $x_p$ being a particular solution of the system while $y$ belongs to the space of solutions of the corresponding homogeneous system.
DOI : 10.21136/AM.1976.103666
Classification : 15A06, 65F05
@article{10_21136_AM_1976_103666,
     author = {Arora, J. L.},
     title = {System of linear equations},
     journal = {Applications of Mathematics},
     pages = {424--430},
     publisher = {mathdoc},
     volume = {21},
     number = {6},
     year = {1976},
     doi = {10.21136/AM.1976.103666},
     mrnumber = {0421057},
     zbl = {0353.15007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/AM.1976.103666/}
}
TY  - JOUR
AU  - Arora, J. L.
TI  - System of linear equations
JO  - Applications of Mathematics
PY  - 1976
SP  - 424
EP  - 430
VL  - 21
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/AM.1976.103666/
DO  - 10.21136/AM.1976.103666
LA  - en
ID  - 10_21136_AM_1976_103666
ER  - 
%0 Journal Article
%A Arora, J. L.
%T System of linear equations
%J Applications of Mathematics
%D 1976
%P 424-430
%V 21
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/AM.1976.103666/
%R 10.21136/AM.1976.103666
%G en
%F 10_21136_AM_1976_103666
Arora, J. L. System of linear equations. Applications of Mathematics, Tome 21 (1976) no. 6, pp. 424-430. doi : 10.21136/AM.1976.103666. http://geodesic.mathdoc.fr/articles/10.21136/AM.1976.103666/

Cité par Sources :