@article{10_21136_AM_1976_103647,
author = {Janovsk\'y, Vladim{\'\i}r and Proch\'azka, Petr},
title = {The nonconforming finite element method in the problem of clamped plate with ribs},
journal = {Applications of Mathematics},
pages = {273--289},
year = {1976},
volume = {21},
number = {4},
doi = {10.21136/AM.1976.103647},
mrnumber = {0413548},
zbl = {0357.65087},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/AM.1976.103647/}
}
TY - JOUR AU - Janovský, Vladimír AU - Procházka, Petr TI - The nonconforming finite element method in the problem of clamped plate with ribs JO - Applications of Mathematics PY - 1976 SP - 273 EP - 289 VL - 21 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.21136/AM.1976.103647/ DO - 10.21136/AM.1976.103647 LA - en ID - 10_21136_AM_1976_103647 ER -
%0 Journal Article %A Janovský, Vladimír %A Procházka, Petr %T The nonconforming finite element method in the problem of clamped plate with ribs %J Applications of Mathematics %D 1976 %P 273-289 %V 21 %N 4 %U http://geodesic.mathdoc.fr/articles/10.21136/AM.1976.103647/ %R 10.21136/AM.1976.103647 %G en %F 10_21136_AM_1976_103647
Janovský, Vladimír; Procházka, Petr. The nonconforming finite element method in the problem of clamped plate with ribs. Applications of Mathematics, Tome 21 (1976) no. 4, pp. 273-289. doi: 10.21136/AM.1976.103647
[1] Bramble J., Hilbert S. R.: Estimative of linear functional on Sobolev spaces with application to Fourier transforms and Spline interpolation. Siam. J. Numer. Anal. 7, (1970), 112- 124. | DOI | MR
[2] Ciarlet P. G.: Conforming and nonconforming finite element methods for solving the plate problem. Conference on the Numerical Solution of Differential Equations, University of Dundee, July 1973, 03-06. | MR
[3] Ciarlet P. C., Raviart P. A.: General Lagrange and Hermite interpolation in $R^n$ with applications to finite element methods. Arch. Rat. Anal. Vol. 46 (1972) 177- 199. | DOI | MR
[4] Jakovlev G. N.: The boundary properties of the functions belonging to the class $W_p^{(1)}$ on domains with conical points. (in Russian). DAN UdSSR T 140 (1961), 73-76. | MR
[5] Kondratěv V. A.: Boundary value problem for elliptic equations with conical or angular points. Trans. Moscow Math. Soc. (1967), 227-313.
[6] Nečas J.: Les methodes directes en theorie des equations elliptiques. Academia, Prague, 1967. | MR
[7] Strang G.: Variational crimes in the finite element method. The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations (A. K. Aziz). Academia Press, New York (1972), 689-710. | MR | Zbl
Cité par Sources :