Stability of iterative schemes for nonselfadjoint equations
Applications of Mathematics, Tome 21 (1976) no. 3, pp. 173-184.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $A$ be a nonselfadjoint positive operator in a real Hilbert space. This paper deals with the stability of a class of iterative schemes used to solve the operator equation $Au=f$. A corresponding class of parabolic equations can also be solved by means of these iterative schemes. Several sufficient conditions of stability are obtained which are expressed in terms of known operators and can be used a priori. The results can be applied to problems with variable coefficients and initial-boundary value problems.
DOI : 10.21136/AM.1976.103637
Classification : 65J05, 65M12
@article{10_21136_AM_1976_103637,
     author = {Gupta, Murli M.},
     title = {Stability of iterative schemes for nonselfadjoint equations},
     journal = {Applications of Mathematics},
     pages = {173--184},
     publisher = {mathdoc},
     volume = {21},
     number = {3},
     year = {1976},
     doi = {10.21136/AM.1976.103637},
     mrnumber = {0403209},
     zbl = {0343.65037},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/AM.1976.103637/}
}
TY  - JOUR
AU  - Gupta, Murli M.
TI  - Stability of iterative schemes for nonselfadjoint equations
JO  - Applications of Mathematics
PY  - 1976
SP  - 173
EP  - 184
VL  - 21
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/AM.1976.103637/
DO  - 10.21136/AM.1976.103637
LA  - en
ID  - 10_21136_AM_1976_103637
ER  - 
%0 Journal Article
%A Gupta, Murli M.
%T Stability of iterative schemes for nonselfadjoint equations
%J Applications of Mathematics
%D 1976
%P 173-184
%V 21
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/AM.1976.103637/
%R 10.21136/AM.1976.103637
%G en
%F 10_21136_AM_1976_103637
Gupta, Murli M. Stability of iterative schemes for nonselfadjoint equations. Applications of Mathematics, Tome 21 (1976) no. 3, pp. 173-184. doi : 10.21136/AM.1976.103637. http://geodesic.mathdoc.fr/articles/10.21136/AM.1976.103637/

Cité par Sources :