Convergence of a finite element method based on the dual variational formulation
Applications of Mathematics, Tome 21 (1976) no. 1, pp. 43-65.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

An "equilibrium model" with piecewise linear polynomials on triangular clements applied to the solution of a mixed boundary value problem for a second order elliptic equation is studied. The procedure is proved to be second order correct in $h$ (the maximal side in the triangulation) provided the exact solution is sufficiently smooth.
DOI : 10.21136/AM.1976.103621
Classification : 35A35, 35B45, 35J20, 65N30
@article{10_21136_AM_1976_103621,
     author = {Haslinger, Jaroslav and Hlav\'a\v{c}ek, Ivan},
     title = {Convergence of a finite element method based on the dual variational formulation},
     journal = {Applications of Mathematics},
     pages = {43--65},
     publisher = {mathdoc},
     volume = {21},
     number = {1},
     year = {1976},
     doi = {10.21136/AM.1976.103621},
     mrnumber = {0398126},
     zbl = {0326.35020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/AM.1976.103621/}
}
TY  - JOUR
AU  - Haslinger, Jaroslav
AU  - Hlaváček, Ivan
TI  - Convergence of a finite element method based on the dual variational formulation
JO  - Applications of Mathematics
PY  - 1976
SP  - 43
EP  - 65
VL  - 21
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/AM.1976.103621/
DO  - 10.21136/AM.1976.103621
LA  - en
ID  - 10_21136_AM_1976_103621
ER  - 
%0 Journal Article
%A Haslinger, Jaroslav
%A Hlaváček, Ivan
%T Convergence of a finite element method based on the dual variational formulation
%J Applications of Mathematics
%D 1976
%P 43-65
%V 21
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/AM.1976.103621/
%R 10.21136/AM.1976.103621
%G en
%F 10_21136_AM_1976_103621
Haslinger, Jaroslav; Hlaváček, Ivan. Convergence of a finite element method based on the dual variational formulation. Applications of Mathematics, Tome 21 (1976) no. 1, pp. 43-65. doi : 10.21136/AM.1976.103621. http://geodesic.mathdoc.fr/articles/10.21136/AM.1976.103621/

Cité par Sources :