Universal approximation by systems of hill functions
Applications of Mathematics, Tome 19 (1974) no. 6, pp. 403-436.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $\{\omega_y\}$ be a system of infinitely smooth rapidly decreasing functions and $\eta (h)$ a certain increasing function, $\eta (0)=0$. Then the approximation sought in the form $\sum c_k\omega_{\eta(h)}((x/h-k)\eta(h))$ is universal, i.e., for any approximated function $f$, the system $\{\omega_y\}$ of hill functions gives the best possible order of approximation limited only by the smoothness of $f$. Moreover, the system $\{\omega_y\}$ can be chosen so that the Fourier transform of $\omega_y$ has zeros at the points $\pm2\pi j/y; j=1,\ldots, J$. As a consequence, the error of the approximation decreases.
DOI : 10.21136/AM.1974.103558
Classification : 41A30, 65N35
@article{10_21136_AM_1974_103558,
     author = {Segeth, Karel},
     title = {Universal approximation by systems of hill functions},
     journal = {Applications of Mathematics},
     pages = {403--436},
     publisher = {mathdoc},
     volume = {19},
     number = {6},
     year = {1974},
     doi = {10.21136/AM.1974.103558},
     mrnumber = {0388812},
     zbl = {0305.41011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/AM.1974.103558/}
}
TY  - JOUR
AU  - Segeth, Karel
TI  - Universal approximation by systems of hill functions
JO  - Applications of Mathematics
PY  - 1974
SP  - 403
EP  - 436
VL  - 19
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/AM.1974.103558/
DO  - 10.21136/AM.1974.103558
LA  - en
ID  - 10_21136_AM_1974_103558
ER  - 
%0 Journal Article
%A Segeth, Karel
%T Universal approximation by systems of hill functions
%J Applications of Mathematics
%D 1974
%P 403-436
%V 19
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/AM.1974.103558/
%R 10.21136/AM.1974.103558
%G en
%F 10_21136_AM_1974_103558
Segeth, Karel. Universal approximation by systems of hill functions. Applications of Mathematics, Tome 19 (1974) no. 6, pp. 403-436. doi : 10.21136/AM.1974.103558. http://geodesic.mathdoc.fr/articles/10.21136/AM.1974.103558/

Cité par Sources :