On properties of binary random numbers
Applications of Mathematics, Tome 19 (1974) no. 6, pp. 375-385.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $\{X_k\}^\infty_{k=1}$ be a sequence of independent zero-one random variables (rv) with $P(X_k=1)=\frac{1}{2} + \Delta$. Then we define the binary random number (brn) $Y=\sum^\infty_{k=1} X_k2^{-k}$. An ideal generator produces 0 and 1 with equal probability, but a real one does it only approximately. The purpose of this paper is to find distribution of brn for $-\frac{1}{2}\Delta \frac{1}{2}$ (also $\Delta =\Delta_k$). Particularly, convergence of the normed sum of brn to normally distributed rv is studied by means of Edgeworth expansion.
DOI : 10.21136/AM.1974.103555
Classification : 60F05, 60F99, 65C10
@article{10_21136_AM_1974_103555,
     author = {V{\'\i}\v{s}ek, Jan \'Amos},
     title = {On properties of binary random numbers},
     journal = {Applications of Mathematics},
     pages = {375--385},
     publisher = {mathdoc},
     volume = {19},
     number = {6},
     year = {1974},
     doi = {10.21136/AM.1974.103555},
     mrnumber = {0375442},
     zbl = {0303.60020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/AM.1974.103555/}
}
TY  - JOUR
AU  - Víšek, Jan Ámos
TI  - On properties of binary random numbers
JO  - Applications of Mathematics
PY  - 1974
SP  - 375
EP  - 385
VL  - 19
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/AM.1974.103555/
DO  - 10.21136/AM.1974.103555
LA  - en
ID  - 10_21136_AM_1974_103555
ER  - 
%0 Journal Article
%A Víšek, Jan Ámos
%T On properties of binary random numbers
%J Applications of Mathematics
%D 1974
%P 375-385
%V 19
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/AM.1974.103555/
%R 10.21136/AM.1974.103555
%G en
%F 10_21136_AM_1974_103555
Víšek, Jan Ámos. On properties of binary random numbers. Applications of Mathematics, Tome 19 (1974) no. 6, pp. 375-385. doi : 10.21136/AM.1974.103555. http://geodesic.mathdoc.fr/articles/10.21136/AM.1974.103555/

Cité par Sources :