The most significant interaction in a contingency table
Applications of Mathematics, Tome 19 (1974) no. 4, pp. 246-252.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let us have a $r \times c$ contingency table with positive frequencies. The interaction is derived which is statistically most significant. A direct proof is given that the test based on this most significant interaction is asymptotically equivalent with the common $\chi^2$-test (under the hypothesis of independence in the contingency table).
DOI : 10.21136/AM.1974.103538
Classification : 62F05, 62G10, 62H99
@article{10_21136_AM_1974_103538,
     author = {And\v{e}l, Ji\v{r}{\'\i}},
     title = {The most significant interaction in a contingency table},
     journal = {Applications of Mathematics},
     pages = {246--252},
     publisher = {mathdoc},
     volume = {19},
     number = {4},
     year = {1974},
     doi = {10.21136/AM.1974.103538},
     mrnumber = {0388619},
     zbl = {0314.62021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/AM.1974.103538/}
}
TY  - JOUR
AU  - Anděl, Jiří
TI  - The most significant interaction in a contingency table
JO  - Applications of Mathematics
PY  - 1974
SP  - 246
EP  - 252
VL  - 19
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/AM.1974.103538/
DO  - 10.21136/AM.1974.103538
LA  - en
ID  - 10_21136_AM_1974_103538
ER  - 
%0 Journal Article
%A Anděl, Jiří
%T The most significant interaction in a contingency table
%J Applications of Mathematics
%D 1974
%P 246-252
%V 19
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/AM.1974.103538/
%R 10.21136/AM.1974.103538
%G en
%F 10_21136_AM_1974_103538
Anděl, Jiří. The most significant interaction in a contingency table. Applications of Mathematics, Tome 19 (1974) no. 4, pp. 246-252. doi : 10.21136/AM.1974.103538. http://geodesic.mathdoc.fr/articles/10.21136/AM.1974.103538/

Cité par Sources :