Periodic solutions of a weakly nonlinear hyperbolic equation in $E_2$ and $E_3$
Applications of Mathematics, Tome 19 (1974) no. 4, pp. 232-245.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

For $n=2$ and 3 the existence and uniqueness of classical periodic solution of $\square_nu+2au_t+2(B,\nabla_nu)+cu=h(t,x)+\epsilon f(t,x,u,\epsilon)$ $(x=(x_1, x_2,\ldots,x_n))$ is proved assuming the periodicity of the right-hand side.
DOI : 10.21136/AM.1974.103537
Classification : 35B10, 35B20, 35L60
@article{10_21136_AM_1974_103537,
     author = {V{\'\i}tek, V\'aclav},
     title = {Periodic solutions of a weakly nonlinear hyperbolic equation in $E_2$ and $E_3$},
     journal = {Applications of Mathematics},
     pages = {232--245},
     publisher = {mathdoc},
     volume = {19},
     number = {4},
     year = {1974},
     doi = {10.21136/AM.1974.103537},
     mrnumber = {0402292},
     zbl = {0311.35004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/AM.1974.103537/}
}
TY  - JOUR
AU  - Vítek, Václav
TI  - Periodic solutions of a weakly nonlinear hyperbolic equation in $E_2$ and $E_3$
JO  - Applications of Mathematics
PY  - 1974
SP  - 232
EP  - 245
VL  - 19
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/AM.1974.103537/
DO  - 10.21136/AM.1974.103537
LA  - en
ID  - 10_21136_AM_1974_103537
ER  - 
%0 Journal Article
%A Vítek, Václav
%T Periodic solutions of a weakly nonlinear hyperbolic equation in $E_2$ and $E_3$
%J Applications of Mathematics
%D 1974
%P 232-245
%V 19
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/AM.1974.103537/
%R 10.21136/AM.1974.103537
%G en
%F 10_21136_AM_1974_103537
Vítek, Václav. Periodic solutions of a weakly nonlinear hyperbolic equation in $E_2$ and $E_3$. Applications of Mathematics, Tome 19 (1974) no. 4, pp. 232-245. doi : 10.21136/AM.1974.103537. http://geodesic.mathdoc.fr/articles/10.21136/AM.1974.103537/

Cité par Sources :