Asymptotic ratios of Bessel functions of purely imaginary argument
Applications of Mathematics, Tome 19 (1974) no. 1, pp. 1-6.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

The Riccati equations as well as some interesting inequalities for the ratios of Bessel functions of purely imaginary argument $T_p(x;1)=\frac {K_p(x)}{xK_{p+1}(x)}$ and $T_p(x;-1)=\frac {I_p(x)}{xI_{p-1}(x)}$ are derived. Solutions of the Riccati equations are given in terms of power series in $p^{-1}$. In particular, the asymptotic formulae for $T_p(x;\pm 1)$ with a remainder of order $O(p^{-5})$ are obtained. For $p$ small, they represent an asymptotic expansion in $x$ up to the order $O(x^{-5})$.
DOI : 10.21136/AM.1974.103508
Classification : 33A40, 33C10
@article{10_21136_AM_1974_103508,
     author = {Trlifaj, Ladislav},
     title = {Asymptotic ratios of {Bessel} functions of purely imaginary argument},
     journal = {Applications of Mathematics},
     pages = {1--6},
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {1974},
     doi = {10.21136/AM.1974.103508},
     mrnumber = {0340669},
     zbl = {0278.33015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/AM.1974.103508/}
}
TY  - JOUR
AU  - Trlifaj, Ladislav
TI  - Asymptotic ratios of Bessel functions of purely imaginary argument
JO  - Applications of Mathematics
PY  - 1974
SP  - 1
EP  - 6
VL  - 19
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/AM.1974.103508/
DO  - 10.21136/AM.1974.103508
LA  - en
ID  - 10_21136_AM_1974_103508
ER  - 
%0 Journal Article
%A Trlifaj, Ladislav
%T Asymptotic ratios of Bessel functions of purely imaginary argument
%J Applications of Mathematics
%D 1974
%P 1-6
%V 19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/AM.1974.103508/
%R 10.21136/AM.1974.103508
%G en
%F 10_21136_AM_1974_103508
Trlifaj, Ladislav. Asymptotic ratios of Bessel functions of purely imaginary argument. Applications of Mathematics, Tome 19 (1974) no. 1, pp. 1-6. doi : 10.21136/AM.1974.103508. http://geodesic.mathdoc.fr/articles/10.21136/AM.1974.103508/

Cité par Sources :