Elliptic boundary value problems with nonvariational perturbation and the finite element method
Applications of Mathematics, Tome 18 (1973) no. 6, pp. 422-433.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

This article deals with the estimate of exactness of finite element method which is applied to homogeneous non-elliptic boundary value problem. It is supposed that the respective differential operator of the problem is a sum of elliptic and a "perturbed" operator. A sufficient condition for this "perturbed" operator is given in order that the convergency of finite element method may be maintained.
DOI : 10.21136/AM.1973.103498
Classification : 35A35, 35B20, 35J40, 65N10
@article{10_21136_AM_1973_103498,
     author = {Janovsk\'y, Vladim{\'\i}r},
     title = {Elliptic boundary value problems with nonvariational perturbation and the finite element method},
     journal = {Applications of Mathematics},
     pages = {422--433},
     publisher = {mathdoc},
     volume = {18},
     number = {6},
     year = {1973},
     doi = {10.21136/AM.1973.103498},
     mrnumber = {0334549},
     zbl = {0281.35007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/AM.1973.103498/}
}
TY  - JOUR
AU  - Janovský, Vladimír
TI  - Elliptic boundary value problems with nonvariational perturbation and the finite element method
JO  - Applications of Mathematics
PY  - 1973
SP  - 422
EP  - 433
VL  - 18
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/AM.1973.103498/
DO  - 10.21136/AM.1973.103498
LA  - en
ID  - 10_21136_AM_1973_103498
ER  - 
%0 Journal Article
%A Janovský, Vladimír
%T Elliptic boundary value problems with nonvariational perturbation and the finite element method
%J Applications of Mathematics
%D 1973
%P 422-433
%V 18
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/AM.1973.103498/
%R 10.21136/AM.1973.103498
%G en
%F 10_21136_AM_1973_103498
Janovský, Vladimír. Elliptic boundary value problems with nonvariational perturbation and the finite element method. Applications of Mathematics, Tome 18 (1973) no. 6, pp. 422-433. doi : 10.21136/AM.1973.103498. http://geodesic.mathdoc.fr/articles/10.21136/AM.1973.103498/

Cité par Sources :