On non-existence of periodic solutions of an important differential equation
Applications of Mathematics, Tome 18 (1973) no. 4, pp. 213-226.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

The equations of variation with respect to the straight-lineequilibrium points $L_1,L_2,L_3$ of the elliptic three-dimensional restricted problem of three bodies are equivalent to a system of two differential equations of the second order and one Hill's equation. In the paper presented here, this Hill's equation is studied and a proof is given that this differential equation has no nontrivial periodic solution.
DOI : 10.21136/AM.1973.103474
Classification : 34B30, 34C25, 70F10
@article{10_21136_AM_1973_103474,
     author = {Matas, Vladim{\'\i}r},
     title = {On non-existence of periodic solutions of an important differential equation},
     journal = {Applications of Mathematics},
     pages = {213--226},
     publisher = {mathdoc},
     volume = {18},
     number = {4},
     year = {1973},
     doi = {10.21136/AM.1973.103474},
     mrnumber = {0320443},
     zbl = {0268.34048},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/AM.1973.103474/}
}
TY  - JOUR
AU  - Matas, Vladimír
TI  - On non-existence of periodic solutions of an important differential equation
JO  - Applications of Mathematics
PY  - 1973
SP  - 213
EP  - 226
VL  - 18
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/AM.1973.103474/
DO  - 10.21136/AM.1973.103474
LA  - en
ID  - 10_21136_AM_1973_103474
ER  - 
%0 Journal Article
%A Matas, Vladimír
%T On non-existence of periodic solutions of an important differential equation
%J Applications of Mathematics
%D 1973
%P 213-226
%V 18
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/AM.1973.103474/
%R 10.21136/AM.1973.103474
%G en
%F 10_21136_AM_1973_103474
Matas, Vladimír. On non-existence of periodic solutions of an important differential equation. Applications of Mathematics, Tome 18 (1973) no. 4, pp. 213-226. doi : 10.21136/AM.1973.103474. http://geodesic.mathdoc.fr/articles/10.21136/AM.1973.103474/

Cité par Sources :