Piecewise polynomial interpolations in the finite element method
Applications of Mathematics, Tome 18 (1973) no. 3, pp. 146-160 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The reduction and the concentration of the parameters determining an interpolation polynomial on a triangle are presented. The interpolations obtained are combined with reduced Hermite interpolations and these combinations are then used for solving plane elliptic boundary value problems under the assumption that the considered domain is polygonal.
The reduction and the concentration of the parameters determining an interpolation polynomial on a triangle are presented. The interpolations obtained are combined with reduced Hermite interpolations and these combinations are then used for solving plane elliptic boundary value problems under the assumption that the considered domain is polygonal.
DOI : 10.21136/AM.1973.103465
Classification : 65N15, 65N30
@article{10_21136_AM_1973_103465,
     author = {Koukal, Stanislav},
     title = {Piecewise polynomial interpolations in the finite element method},
     journal = {Applications of Mathematics},
     pages = {146--160},
     year = {1973},
     volume = {18},
     number = {3},
     doi = {10.21136/AM.1973.103465},
     mrnumber = {0321318},
     zbl = {0305.65070},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/AM.1973.103465/}
}
TY  - JOUR
AU  - Koukal, Stanislav
TI  - Piecewise polynomial interpolations in the finite element method
JO  - Applications of Mathematics
PY  - 1973
SP  - 146
EP  - 160
VL  - 18
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.21136/AM.1973.103465/
DO  - 10.21136/AM.1973.103465
LA  - en
ID  - 10_21136_AM_1973_103465
ER  - 
%0 Journal Article
%A Koukal, Stanislav
%T Piecewise polynomial interpolations in the finite element method
%J Applications of Mathematics
%D 1973
%P 146-160
%V 18
%N 3
%U http://geodesic.mathdoc.fr/articles/10.21136/AM.1973.103465/
%R 10.21136/AM.1973.103465
%G en
%F 10_21136_AM_1973_103465
Koukal, Stanislav. Piecewise polynomial interpolations in the finite element method. Applications of Mathematics, Tome 18 (1973) no. 3, pp. 146-160. doi: 10.21136/AM.1973.103465

[1] Ženíšek A.: Interpolation Polynomials on the Triangle. Numer. Math. 15, 283 - 296 (1970). | DOI | MR

[2] Bramble J. H., Zlámal M.: Triangular Elements in the Finite Element Method. Math. Соmр. 24, 809-820 (1970). | MR

[3] Koukal S.: Piecewise Polynomial Interpolations and their Applications to Partial Differential Equations. (Czech). Sborník VAAZ, Sv. 18, 1/B, 29-38 (1970), Brno.

[4] Melkes F.: Reduced Piecewise Bivariate Hermite Interpolations. Numer. Math. 19, 326-340 (1972). | DOI | MR | Zbl

[5] Bell K.: A Refined Triangular Plate Bending Finite Element. Inter. J. for Numerical Methods in Engineering 1, 101 - 122 (1969).

[6] Zlámal M.: A Finite Procedure of the Second Order of Accuracy. Numer. Math. 14, 394 to 402 (1970). | DOI | MR

[7] Birkhoff G., Schultz M. H., Varga R. S.: Piecewise Hermite Interpolation in One and Two Variables with Application to Partial Differential Equations. Numer. Math. 11, 232 - 256 (1968). | DOI | MR

[8] Nečas J.: Les méthodes directes en théorie des équations elliptiques. Academia, Prague 1967. | MR

[9] Felippa A. C.: Refined Finite Element Analysis of Linear and Nonlinear Two- Dimensional Structures. SESM Report No. 66-22, University of California, Berkeley, Calif., 1967.

[10] Anderheggen E.: Programme zur Methode der finiten Elemente. Institut für Baustatik, Eidgenössische Technische Hochschule, Zürich, 1969.

Cité par Sources :