Some cases of numerical solution of differential equations describing the vortex-flow through three-dimensional axially symmetric channels
Applications of Mathematics, Tome 16 (1971) no. 4, pp. 265-288 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In the article one partial differential equation of the second order is derived from the system of Euler's equations and the equation of continuity and it is solved by the finite-difference method, which gives good results.
In the article one partial differential equation of the second order is derived from the system of Euler's equations and the equation of continuity and it is solved by the finite-difference method, which gives good results.
DOI : 10.21136/AM.1971.103357
Classification : 65Z05
@article{10_21136_AM_1971_103357,
     author = {Feistauer, Miloslav},
     title = {Some cases of numerical solution of differential equations describing the vortex-flow through three-dimensional axially symmetric channels},
     journal = {Applications of Mathematics},
     pages = {265--288},
     year = {1971},
     volume = {16},
     number = {4},
     doi = {10.21136/AM.1971.103357},
     mrnumber = {0286370},
     zbl = {0221.65184},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/AM.1971.103357/}
}
TY  - JOUR
AU  - Feistauer, Miloslav
TI  - Some cases of numerical solution of differential equations describing the vortex-flow through three-dimensional axially symmetric channels
JO  - Applications of Mathematics
PY  - 1971
SP  - 265
EP  - 288
VL  - 16
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.21136/AM.1971.103357/
DO  - 10.21136/AM.1971.103357
LA  - en
ID  - 10_21136_AM_1971_103357
ER  - 
%0 Journal Article
%A Feistauer, Miloslav
%T Some cases of numerical solution of differential equations describing the vortex-flow through three-dimensional axially symmetric channels
%J Applications of Mathematics
%D 1971
%P 265-288
%V 16
%N 4
%U http://geodesic.mathdoc.fr/articles/10.21136/AM.1971.103357/
%R 10.21136/AM.1971.103357
%G en
%F 10_21136_AM_1971_103357
Feistauer, Miloslav. Some cases of numerical solution of differential equations describing the vortex-flow through three-dimensional axially symmetric channels. Applications of Mathematics, Tome 16 (1971) no. 4, pp. 265-288. doi: 10.21136/AM.1971.103357

[1] Л. Г. Лопцянстт: Механика жидкости и газа. Физматгиз, Москва, 1959. | Zbl

[2] H. Е. Кочин И. Л. Кибелъ H. В. Розе: Теоретическая гидромеханика. Ленинград-Москва, 1948. | Zbl

[3] I. Černý: Fundaments of Analysis in Complex Region. (Czech), Academia, Prague, 1967.

[4] V. Jarník: Differential Calculus I. (Czech), NČSAV, Prague, 1953.

[5] V. Jarník: Differential Calculus II. (Czech), NČSAV, Prague, 1956.

[6] Л. С. Понтрягин: Обыкновенные дифференциальные уравнения. ГИФМЛ, Москва, 1961. | Zbl

[7] С. Г. Михлин X. Л. Смолицкий: Приближенные методы решения дифференциальных и интегральных уравнений. Наука, Москва, 1965. | Zbl

[8] I. Babuška M. Práger E. Vitásek: Numerical Processes in Differential Equations. SNTL, Prague, 1968. | MR

[9] L. Collatz: Numerische Behandlung von Differentialgleichungen. Springer Verlag, Berlin, 1955. | MR | Zbl

[10] L. Bers: On Mildly Nonlinear Partial Difference Equations of Elliptic Type. Journ. Res. Nat. Bur. Stand., 51, 1953, No 5. | DOI | MR | Zbl

[11] G. E. Forsythe W. R. Wasow: Finite-Difference Methods for Partial Differential Equations. New York-London.

[12] Д. К. Фадеев B. H. Фадеева: Вычислительные методы линейной алгебры. ГИФМЛ, Москва, 1963. | Zbl

[13] О. Taussky: A Recurring Theorem on Determinants. Amer. Math. Monthly, 56, 1949, 672-676. | DOI | MR | Zbl

[14] Л. А. Люсперник В. И. Соболев: Элменты функционального анализа. Гостехиздат Москва-Ленинград, 1951. | Zbl

[15] T. S. Motzkin W. R. Wasow: On the Approximation of Linear Differential Equations by Difference Equations with Positive Coefficients. Journ. Math. Phys. 31, 1953, No 4.

[16] J. Kačur: On Existence of the Weak Solution fo Non-Linear Partial Differential Equations of Elliptic Type. Commentationes Mathematicae Universitatis Carolinae, 11, 1 (1970). | MR

Cité par Sources :