A method for dealing with ill-conditioned symmetric linear systems
Applications of Mathematics, Tome 15 (1970) no. 6, pp. 407-412.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

In [1], a method is suggested, in a rather implicit way, by which an illconditioned symmetric system of linear algebraic equations is "improved" by replacing a row of the coefficient matrix by an eigenvector. In this paper, this method is described and investigated, the best choices of parameters are recommended, and estimates of the improvement archieved are given.
DOI : 10.21136/AM.1970.103314
Classification : 65F99
@article{10_21136_AM_1970_103314,
     author = {Liebl, Petr and Nov\'akov\'a, Mark\'eta},
     title = {A method for dealing with ill-conditioned symmetric linear systems},
     journal = {Applications of Mathematics},
     pages = {407--412},
     publisher = {mathdoc},
     volume = {15},
     number = {6},
     year = {1970},
     doi = {10.21136/AM.1970.103314},
     mrnumber = {0278501},
     zbl = {0221.65074},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/AM.1970.103314/}
}
TY  - JOUR
AU  - Liebl, Petr
AU  - Nováková, Markéta
TI  - A method for dealing with ill-conditioned symmetric linear systems
JO  - Applications of Mathematics
PY  - 1970
SP  - 407
EP  - 412
VL  - 15
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/AM.1970.103314/
DO  - 10.21136/AM.1970.103314
LA  - en
ID  - 10_21136_AM_1970_103314
ER  - 
%0 Journal Article
%A Liebl, Petr
%A Nováková, Markéta
%T A method for dealing with ill-conditioned symmetric linear systems
%J Applications of Mathematics
%D 1970
%P 407-412
%V 15
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/AM.1970.103314/
%R 10.21136/AM.1970.103314
%G en
%F 10_21136_AM_1970_103314
Liebl, Petr; Nováková, Markéta. A method for dealing with ill-conditioned symmetric linear systems. Applications of Mathematics, Tome 15 (1970) no. 6, pp. 407-412. doi : 10.21136/AM.1970.103314. http://geodesic.mathdoc.fr/articles/10.21136/AM.1970.103314/

Cité par Sources :