Conformal mapping of the halfplane onto a strip with variable width
Applications of Mathematics, Tome 15 (1970) no. 6, pp. 391-398.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

By using Schwarz-Christoffel theorem the author deduces the conformal mapping of a halfplane onto an infinitely long strip whose one boundary id a straight line while the other one is a polygonal line consisting of two half lines parallel to the first boundary and connected by a segment whose slope angle is a fractional multiple of $\pi$. This mapping is expressed by means of elementary functions distinguishing the cases when $\pi$ is divided by odd or even integer; some important properties of this mapping are shown.
DOI : 10.21136/AM.1970.103312
Classification : 30C20
@article{10_21136_AM_1970_103312,
     author = {Hvo\v{z}dara, Milan},
     title = {Conformal mapping of the halfplane onto a strip with variable width},
     journal = {Applications of Mathematics},
     pages = {391--398},
     publisher = {mathdoc},
     volume = {15},
     number = {6},
     year = {1970},
     doi = {10.21136/AM.1970.103312},
     mrnumber = {0279288},
     zbl = {0206.36301},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/AM.1970.103312/}
}
TY  - JOUR
AU  - Hvoždara, Milan
TI  - Conformal mapping of the halfplane onto a strip with variable width
JO  - Applications of Mathematics
PY  - 1970
SP  - 391
EP  - 398
VL  - 15
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/AM.1970.103312/
DO  - 10.21136/AM.1970.103312
LA  - en
ID  - 10_21136_AM_1970_103312
ER  - 
%0 Journal Article
%A Hvoždara, Milan
%T Conformal mapping of the halfplane onto a strip with variable width
%J Applications of Mathematics
%D 1970
%P 391-398
%V 15
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/AM.1970.103312/
%R 10.21136/AM.1970.103312
%G en
%F 10_21136_AM_1970_103312
Hvoždara, Milan. Conformal mapping of the halfplane onto a strip with variable width. Applications of Mathematics, Tome 15 (1970) no. 6, pp. 391-398. doi : 10.21136/AM.1970.103312. http://geodesic.mathdoc.fr/articles/10.21136/AM.1970.103312/

Cité par Sources :