The Reissnerian algorithms in the refined theories of the bending of plates
Applications of Mathematics, Tome 13 (1968) no. 6, pp. 441-455.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Starting from the refined theories of the bending of plates proposed by I. Babuška and M. Práger and using the variational principle a differential equation of infinite order is derived for the special case of one unknown function $w_0(x,y)$. By the introduction of polymoments and poly-shear forces it is shown that the obtained boundary conditions represent a generalization of Kirchhoff's boundary conditions and, therefore, the solution corresponds to the fundamental stress state only.
DOI : 10.21136/AM.1968.103194
Classification : 74K20
@article{10_21136_AM_1968_103194,
     author = {Hanu\v{s}ka, Alexander},
     title = {The {Reissnerian} algorithms in the refined theories of the bending of plates},
     journal = {Applications of Mathematics},
     pages = {441--455},
     publisher = {mathdoc},
     volume = {13},
     number = {6},
     year = {1968},
     doi = {10.21136/AM.1968.103194},
     zbl = {0261.73038},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/AM.1968.103194/}
}
TY  - JOUR
AU  - Hanuška, Alexander
TI  - The Reissnerian algorithms in the refined theories of the bending of plates
JO  - Applications of Mathematics
PY  - 1968
SP  - 441
EP  - 455
VL  - 13
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/AM.1968.103194/
DO  - 10.21136/AM.1968.103194
LA  - en
ID  - 10_21136_AM_1968_103194
ER  - 
%0 Journal Article
%A Hanuška, Alexander
%T The Reissnerian algorithms in the refined theories of the bending of plates
%J Applications of Mathematics
%D 1968
%P 441-455
%V 13
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/AM.1968.103194/
%R 10.21136/AM.1968.103194
%G en
%F 10_21136_AM_1968_103194
Hanuška, Alexander. The Reissnerian algorithms in the refined theories of the bending of plates. Applications of Mathematics, Tome 13 (1968) no. 6, pp. 441-455. doi : 10.21136/AM.1968.103194. http://geodesic.mathdoc.fr/articles/10.21136/AM.1968.103194/

Cité par Sources :