Stability of flat thermal flux in a slab reactor
Applications of Mathematics, Tome 13 (1968) no. 5, pp. 367-375.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Using the qualitative theory of differential equations the equivalence of the boundary value and the Cauchy's initial value problem is demonstrated for the slab flat flux reactor. It is found that there exists an interval of the initial (central) fuel concentrations for which the initial value problem (with two algebraic conditions) describes a critical flat flux reactor while solutions outside this interval describe undercritical systems of a nonmultiplying medium.
DOI : 10.21136/AM.1968.103183
Classification : 82-34
Keywords: numerical analysis
@article{10_21136_AM_1968_103183,
     author = {Barto\v{s}ek, V\'aclav and Zezula, Rostislav},
     title = {Stability of flat thermal flux in a slab reactor},
     journal = {Applications of Mathematics},
     pages = {367--375},
     publisher = {mathdoc},
     volume = {13},
     number = {5},
     year = {1968},
     doi = {10.21136/AM.1968.103183},
     mrnumber = {0243795},
     zbl = {0172.20201},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/AM.1968.103183/}
}
TY  - JOUR
AU  - Bartošek, Václav
AU  - Zezula, Rostislav
TI  - Stability of flat thermal flux in a slab reactor
JO  - Applications of Mathematics
PY  - 1968
SP  - 367
EP  - 375
VL  - 13
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/AM.1968.103183/
DO  - 10.21136/AM.1968.103183
LA  - en
ID  - 10_21136_AM_1968_103183
ER  - 
%0 Journal Article
%A Bartošek, Václav
%A Zezula, Rostislav
%T Stability of flat thermal flux in a slab reactor
%J Applications of Mathematics
%D 1968
%P 367-375
%V 13
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/AM.1968.103183/
%R 10.21136/AM.1968.103183
%G en
%F 10_21136_AM_1968_103183
Bartošek, Václav; Zezula, Rostislav. Stability of flat thermal flux in a slab reactor. Applications of Mathematics, Tome 13 (1968) no. 5, pp. 367-375. doi : 10.21136/AM.1968.103183. http://geodesic.mathdoc.fr/articles/10.21136/AM.1968.103183/

Cité par Sources :