On maximizing a concave function subject to linear constraints by Newton's method
Applications of Mathematics, Tome 13 (1968) no. 4, pp. 339-355.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

The paper deals with an adaptation of Newton's method for solving nonlinear programming problems. The adaptation is derived by replacing the gradient direction in Rosen's method by Newton's direction and both its convergence and practical aspects are discussed. Convergence properties of another adaptation of Newton's method (suggested by Hájek) are studied, too.
DOI : 10.21136/AM.1968.103178
Classification : 65K05, 90C26, 90C30
@article{10_21136_AM_1968_103178,
     author = {\v{Z}\'a\v{c}kov\'a, Jitka},
     title = {On maximizing a concave function subject to linear constraints by {Newton's} method},
     journal = {Applications of Mathematics},
     pages = {339--355},
     publisher = {mathdoc},
     volume = {13},
     number = {4},
     year = {1968},
     doi = {10.21136/AM.1968.103178},
     mrnumber = {0256732},
     zbl = {0212.18202},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/AM.1968.103178/}
}
TY  - JOUR
AU  - Žáčková, Jitka
TI  - On maximizing a concave function subject to linear constraints by Newton's method
JO  - Applications of Mathematics
PY  - 1968
SP  - 339
EP  - 355
VL  - 13
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/AM.1968.103178/
DO  - 10.21136/AM.1968.103178
LA  - en
ID  - 10_21136_AM_1968_103178
ER  - 
%0 Journal Article
%A Žáčková, Jitka
%T On maximizing a concave function subject to linear constraints by Newton's method
%J Applications of Mathematics
%D 1968
%P 339-355
%V 13
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/AM.1968.103178/
%R 10.21136/AM.1968.103178
%G en
%F 10_21136_AM_1968_103178
Žáčková, Jitka. On maximizing a concave function subject to linear constraints by Newton's method. Applications of Mathematics, Tome 13 (1968) no. 4, pp. 339-355. doi : 10.21136/AM.1968.103178. http://geodesic.mathdoc.fr/articles/10.21136/AM.1968.103178/

Cité par Sources :