On necessary conditions for a class of systems of linear inequalities
Applications of Mathematics, Tome 13 (1968) no. 4, pp. 299-303.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

In this note a class of convex polyhedral sets of functions is studied. A set of the considered class is non-emplty if it satisfies certain conditions. Using Theorem 1 of this paper in the case of multi-index transportations problems we obtain necessary conditions for the existence of a feasible solution to this problem.
DOI : 10.21136/AM.1968.103176
Classification : 15-50
Keywords: linear algebra
@article{10_21136_AM_1968_103176,
     author = {Mor\'avek, Jaroslav and Vlach, Milan},
     title = {On necessary conditions for a class of systems of linear inequalities},
     journal = {Applications of Mathematics},
     pages = {299--303},
     publisher = {mathdoc},
     volume = {13},
     number = {4},
     year = {1968},
     doi = {10.21136/AM.1968.103176},
     mrnumber = {0240119},
     zbl = {0165.34601},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/AM.1968.103176/}
}
TY  - JOUR
AU  - Morávek, Jaroslav
AU  - Vlach, Milan
TI  - On necessary conditions for a class of systems of linear inequalities
JO  - Applications of Mathematics
PY  - 1968
SP  - 299
EP  - 303
VL  - 13
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/AM.1968.103176/
DO  - 10.21136/AM.1968.103176
LA  - en
ID  - 10_21136_AM_1968_103176
ER  - 
%0 Journal Article
%A Morávek, Jaroslav
%A Vlach, Milan
%T On necessary conditions for a class of systems of linear inequalities
%J Applications of Mathematics
%D 1968
%P 299-303
%V 13
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/AM.1968.103176/
%R 10.21136/AM.1968.103176
%G en
%F 10_21136_AM_1968_103176
Morávek, Jaroslav; Vlach, Milan. On necessary conditions for a class of systems of linear inequalities. Applications of Mathematics, Tome 13 (1968) no. 4, pp. 299-303. doi : 10.21136/AM.1968.103176. http://geodesic.mathdoc.fr/articles/10.21136/AM.1968.103176/

Cité par Sources :