Iterative solution of the best linear extrapolation problem in multidimensional stationary random sequences
Applications of Mathematics, Tome 13 (1968) no. 3, pp. 226-240.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

An iterative method for linear extrapolation of twodimensional random sequences is derived. Steps of this procedure are based (i) on Jaglom's method, (ii) on Hájek's method. A numerical example is given in the both cases. Finally the iterative method is generalized for the $n$ - dimensional case.
DOI : 10.21136/AM.1968.103165
Classification : 62-85
Keywords: probability theory
@article{10_21136_AM_1968_103165,
     author = {And\v{e}l, Ji\v{r}{\'\i}},
     title = {Iterative solution of the best linear extrapolation problem in multidimensional stationary random sequences},
     journal = {Applications of Mathematics},
     pages = {226--240},
     publisher = {mathdoc},
     volume = {13},
     number = {3},
     year = {1968},
     doi = {10.21136/AM.1968.103165},
     mrnumber = {0239708},
     zbl = {0157.25704},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/AM.1968.103165/}
}
TY  - JOUR
AU  - Anděl, Jiří
TI  - Iterative solution of the best linear extrapolation problem in multidimensional stationary random sequences
JO  - Applications of Mathematics
PY  - 1968
SP  - 226
EP  - 240
VL  - 13
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/AM.1968.103165/
DO  - 10.21136/AM.1968.103165
LA  - en
ID  - 10_21136_AM_1968_103165
ER  - 
%0 Journal Article
%A Anděl, Jiří
%T Iterative solution of the best linear extrapolation problem in multidimensional stationary random sequences
%J Applications of Mathematics
%D 1968
%P 226-240
%V 13
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/AM.1968.103165/
%R 10.21136/AM.1968.103165
%G en
%F 10_21136_AM_1968_103165
Anděl, Jiří. Iterative solution of the best linear extrapolation problem in multidimensional stationary random sequences. Applications of Mathematics, Tome 13 (1968) no. 3, pp. 226-240. doi : 10.21136/AM.1968.103165. http://geodesic.mathdoc.fr/articles/10.21136/AM.1968.103165/

Cité par Sources :