Free boundary regularity in the triple membrane problem
Ars Inveniendi Analytica (2021) Cet article a éte moissonné depuis la source Ars Inveniendi Analytica website

Voir la notice de l'article

We investigate the regularity of the free boundaries in the 3 elastic membranes problem. We show that the two free boundaries corresponding to the coincidence regions between consecutive membranes are $C^{1,\log}$-hypersurfaces near a regular intersection point. We also study two types of singular intersections. The first type of singular points are locally covered by a $C^{1,\alpha}$-hypersurface. The second type of singular points stratify and each stratum is locally covered by a $C^1$-manifold.
Publié le :
DOI : 10.15781/ys6e-4d80
@article{10_15781_ys6e_4d80,
     author = {Ovidiu Savin and Hui Yu},
     title = {Free boundary regularity in the triple membrane problem},
     journal = {Ars Inveniendi Analytica},
     year = {2021},
     doi = {10.15781/ys6e-4d80},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.15781/ys6e-4d80/}
}
TY  - JOUR
AU  - Ovidiu Savin
AU  - Hui Yu
TI  - Free boundary regularity in the triple membrane problem
JO  - Ars Inveniendi Analytica
PY  - 2021
UR  - http://geodesic.mathdoc.fr/articles/10.15781/ys6e-4d80/
DO  - 10.15781/ys6e-4d80
LA  - en
ID  - 10_15781_ys6e_4d80
ER  - 
%0 Journal Article
%A Ovidiu Savin
%A Hui Yu
%T Free boundary regularity in the triple membrane problem
%J Ars Inveniendi Analytica
%D 2021
%U http://geodesic.mathdoc.fr/articles/10.15781/ys6e-4d80/
%R 10.15781/ys6e-4d80
%G en
%F 10_15781_ys6e_4d80
Ovidiu Savin; Hui Yu. Free boundary regularity in the triple membrane problem. Ars Inveniendi Analytica (2021). doi: 10.15781/ys6e-4d80

Cité par Sources :