Free boundary regularity in the triple membrane problem
Ars Inveniendi Analytica (2021).

Voir la notice de l'article provenant de la source Ars Inveniendi Analytica website

We investigate the regularity of the free boundaries in the 3 elastic membranes problem. We show that the two free boundaries corresponding to the coincidence regions between consecutive membranes are $C^{1,\log}$-hypersurfaces near a regular intersection point. We also study two types of singular intersections. The first type of singular points are locally covered by a $C^{1,\alpha}$-hypersurface. The second type of singular points stratify and each stratum is locally covered by a $C^1$-manifold.
Publié le :
DOI : 10.15781/ys6e-4d80
@article{10_15781_ys6e_4d80,
     author = {Ovidiu Savin and Hui Yu},
     title = {Free boundary regularity in the triple membrane problem},
     journal = {Ars Inveniendi Analytica},
     publisher = {mathdoc},
     year = {2021},
     doi = {10.15781/ys6e-4d80},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.15781/ys6e-4d80/}
}
TY  - JOUR
AU  - Ovidiu Savin
AU  - Hui Yu
TI  - Free boundary regularity in the triple membrane problem
JO  - Ars Inveniendi Analytica
PY  - 2021
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.15781/ys6e-4d80/
DO  - 10.15781/ys6e-4d80
LA  - en
ID  - 10_15781_ys6e_4d80
ER  - 
%0 Journal Article
%A Ovidiu Savin
%A Hui Yu
%T Free boundary regularity in the triple membrane problem
%J Ars Inveniendi Analytica
%D 2021
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.15781/ys6e-4d80/
%R 10.15781/ys6e-4d80
%G en
%F 10_15781_ys6e_4d80
Ovidiu Savin; Hui Yu. Free boundary regularity in the triple membrane problem. Ars Inveniendi Analytica (2021). doi : 10.15781/ys6e-4d80. http://geodesic.mathdoc.fr/articles/10.15781/ys6e-4d80/

Cité par Sources :