Existence of optimizers in a Sobolev inequality for vector fields
Ars Inveniendi Analytica (2022).

Voir la notice de l'article provenant de la source Ars Inveniendi Analytica website

We consider the minimization problem corresponding to a Sobolev inequality for vector fields and show that minimizing sequences are relatively compact up to the symmetries of the problem. In particular, there is a minimizer. An ingredient in our proof is a version of the Rellich--Kondrachov compactness theorem for sequences satisfying a nonlinear constraint.
Publié le :
DOI : 10.15781/rvnn-bp52
@article{10_15781_rvnn_bp52,
     author = {Rupert L. Frank and Michael Loss},
     title = {Existence of optimizers in a {Sobolev} inequality for vector fields},
     journal = {Ars Inveniendi Analytica},
     publisher = {mathdoc},
     year = {2022},
     doi = {10.15781/rvnn-bp52},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.15781/rvnn-bp52/}
}
TY  - JOUR
AU  - Rupert L. Frank
AU  - Michael Loss
TI  - Existence of optimizers in a Sobolev inequality for vector fields
JO  - Ars Inveniendi Analytica
PY  - 2022
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.15781/rvnn-bp52/
DO  - 10.15781/rvnn-bp52
LA  - en
ID  - 10_15781_rvnn_bp52
ER  - 
%0 Journal Article
%A Rupert L. Frank
%A Michael Loss
%T Existence of optimizers in a Sobolev inequality for vector fields
%J Ars Inveniendi Analytica
%D 2022
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.15781/rvnn-bp52/
%R 10.15781/rvnn-bp52
%G en
%F 10_15781_rvnn_bp52
Rupert L. Frank; Michael Loss. Existence of optimizers in a Sobolev inequality for vector fields. Ars Inveniendi Analytica (2022). doi : 10.15781/rvnn-bp52. http://geodesic.mathdoc.fr/articles/10.15781/rvnn-bp52/

Cité par Sources :