Existence of optimizers in a Sobolev inequality for vector fields
Ars Inveniendi Analytica (2022)
Cet article a éte moissonné depuis la source Ars Inveniendi Analytica website
We consider the minimization problem corresponding to a Sobolev inequality
for vector fields and show that minimizing sequences are relatively compact up
to the symmetries of the problem. In particular, there is a minimizer. An
ingredient in our proof is a version of the Rellich--Kondrachov compactness
theorem for sequences satisfying a nonlinear constraint.
@article{10_15781_rvnn_bp52,
author = {Rupert L. Frank and Michael Loss},
title = {Existence of optimizers in a {Sobolev} inequality for vector fields},
journal = {Ars Inveniendi Analytica},
year = {2022},
doi = {10.15781/rvnn-bp52},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.15781/rvnn-bp52/}
}
Rupert L. Frank; Michael Loss. Existence of optimizers in a Sobolev inequality for vector fields. Ars Inveniendi Analytica (2022). doi: 10.15781/rvnn-bp52
Cité par Sources :