Holder estimates for kinetic Fokker-Planck equations up to the boundary
Ars Inveniendi Analytica (2022).

Voir la notice de l'article provenant de la source Ars Inveniendi Analytica website

We obtain local Holder continuity estimates up to the boundary for a kinetic Fokker-Planck equation with rough coefficients, with the prescribed influx boundary condition. Our result extends some recent developments that incorporate De Giorgi methods to kinetic Fokker-Planck equations. We also obtain higher order asymptotic estimates near the incoming part of the boundary. In particular, when the equation has a zero boundary conditions and no source term, we prove that the solution vanishes at infinite order on the incoming part of the boundary.
Publié le :
DOI : 10.15781/nqdd-qs03
@article{10_15781_nqdd_qs03,
     author = {Luis Silvestre},
     title = {Holder estimates for kinetic {Fokker-Planck} equations up to the boundary},
     journal = {Ars Inveniendi Analytica},
     publisher = {mathdoc},
     year = {2022},
     doi = {10.15781/nqdd-qs03},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.15781/nqdd-qs03/}
}
TY  - JOUR
AU  - Luis Silvestre
TI  - Holder estimates for kinetic Fokker-Planck equations up to the boundary
JO  - Ars Inveniendi Analytica
PY  - 2022
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.15781/nqdd-qs03/
DO  - 10.15781/nqdd-qs03
LA  - en
ID  - 10_15781_nqdd_qs03
ER  - 
%0 Journal Article
%A Luis Silvestre
%T Holder estimates for kinetic Fokker-Planck equations up to the boundary
%J Ars Inveniendi Analytica
%D 2022
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.15781/nqdd-qs03/
%R 10.15781/nqdd-qs03
%G en
%F 10_15781_nqdd_qs03
Luis Silvestre. Holder estimates for kinetic Fokker-Planck equations up to the boundary. Ars Inveniendi Analytica (2022). doi : 10.15781/nqdd-qs03. http://geodesic.mathdoc.fr/articles/10.15781/nqdd-qs03/

Cité par Sources :