Holder estimates for kinetic Fokker-Planck equations up to the boundary
Ars Inveniendi Analytica (2022) Cet article a éte moissonné depuis la source Ars Inveniendi Analytica website

Voir la notice de l'article

We obtain local Holder continuity estimates up to the boundary for a kinetic Fokker-Planck equation with rough coefficients, with the prescribed influx boundary condition. Our result extends some recent developments that incorporate De Giorgi methods to kinetic Fokker-Planck equations. We also obtain higher order asymptotic estimates near the incoming part of the boundary. In particular, when the equation has a zero boundary conditions and no source term, we prove that the solution vanishes at infinite order on the incoming part of the boundary.
Publié le :
DOI : 10.15781/nqdd-qs03
@article{10_15781_nqdd_qs03,
     author = {Luis Silvestre},
     title = {Holder estimates for kinetic {Fokker-Planck} equations up to the boundary},
     journal = {Ars Inveniendi Analytica},
     year = {2022},
     doi = {10.15781/nqdd-qs03},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.15781/nqdd-qs03/}
}
TY  - JOUR
AU  - Luis Silvestre
TI  - Holder estimates for kinetic Fokker-Planck equations up to the boundary
JO  - Ars Inveniendi Analytica
PY  - 2022
UR  - http://geodesic.mathdoc.fr/articles/10.15781/nqdd-qs03/
DO  - 10.15781/nqdd-qs03
LA  - en
ID  - 10_15781_nqdd_qs03
ER  - 
%0 Journal Article
%A Luis Silvestre
%T Holder estimates for kinetic Fokker-Planck equations up to the boundary
%J Ars Inveniendi Analytica
%D 2022
%U http://geodesic.mathdoc.fr/articles/10.15781/nqdd-qs03/
%R 10.15781/nqdd-qs03
%G en
%F 10_15781_nqdd_qs03
Luis Silvestre. Holder estimates for kinetic Fokker-Planck equations up to the boundary. Ars Inveniendi Analytica (2022). doi: 10.15781/nqdd-qs03

Cité par Sources :