Logarithmic bounds for isoperimetry and slices of convex sets
Ars Inveniendi Analytica (2023) Cet article a éte moissonné depuis la source Ars Inveniendi Analytica website

Voir la notice de l'article

We prove that the Bourgain slicing conjecture and the Kannan-Lov\'asz-Simonovits (KLS) isoperimetric conjecture in $\mathbb{R}^n$ hold true up to a factor of $\sqrt{\log n}$. A new ingredient used in the proof is an improved log-concave Lichnerowicz inequality.
Publié le :
DOI : 10.15781/jsjy-0b06
@article{10_15781_jsjy_0b06,
     author = {Bo'az Klartag},
     title = {Logarithmic bounds for isoperimetry and slices of convex sets},
     journal = {Ars Inveniendi Analytica},
     year = {2023},
     doi = {10.15781/jsjy-0b06},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.15781/jsjy-0b06/}
}
TY  - JOUR
AU  - Bo'az Klartag
TI  - Logarithmic bounds for isoperimetry and slices of convex sets
JO  - Ars Inveniendi Analytica
PY  - 2023
UR  - http://geodesic.mathdoc.fr/articles/10.15781/jsjy-0b06/
DO  - 10.15781/jsjy-0b06
LA  - en
ID  - 10_15781_jsjy_0b06
ER  - 
%0 Journal Article
%A Bo'az Klartag
%T Logarithmic bounds for isoperimetry and slices of convex sets
%J Ars Inveniendi Analytica
%D 2023
%U http://geodesic.mathdoc.fr/articles/10.15781/jsjy-0b06/
%R 10.15781/jsjy-0b06
%G en
%F 10_15781_jsjy_0b06
Bo'az Klartag. Logarithmic bounds for isoperimetry and slices of convex sets. Ars Inveniendi Analytica (2023). doi: 10.15781/jsjy-0b06

Cité par Sources :