Logarithmic bounds for isoperimetry and slices of convex sets
Ars Inveniendi Analytica (2023).

Voir la notice de l'article provenant de la source Ars Inveniendi Analytica website

We prove that the Bourgain slicing conjecture and the Kannan-Lov\'asz-Simonovits (KLS) isoperimetric conjecture in $\mathbb{R}^n$ hold true up to a factor of $\sqrt{\log n}$. A new ingredient used in the proof is an improved log-concave Lichnerowicz inequality.
Publié le :
DOI : 10.15781/jsjy-0b06
@article{10_15781_jsjy_0b06,
     author = {Bo'az Klartag},
     title = {Logarithmic bounds for isoperimetry and slices of convex sets},
     journal = {Ars Inveniendi Analytica},
     publisher = {mathdoc},
     year = {2023},
     doi = {10.15781/jsjy-0b06},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.15781/jsjy-0b06/}
}
TY  - JOUR
AU  - Bo'az Klartag
TI  - Logarithmic bounds for isoperimetry and slices of convex sets
JO  - Ars Inveniendi Analytica
PY  - 2023
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.15781/jsjy-0b06/
DO  - 10.15781/jsjy-0b06
LA  - en
ID  - 10_15781_jsjy_0b06
ER  - 
%0 Journal Article
%A Bo'az Klartag
%T Logarithmic bounds for isoperimetry and slices of convex sets
%J Ars Inveniendi Analytica
%D 2023
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.15781/jsjy-0b06/
%R 10.15781/jsjy-0b06
%G en
%F 10_15781_jsjy_0b06
Bo'az Klartag. Logarithmic bounds for isoperimetry and slices of convex sets. Ars Inveniendi Analytica (2023). doi : 10.15781/jsjy-0b06. http://geodesic.mathdoc.fr/articles/10.15781/jsjy-0b06/

Cité par Sources :