Logarithmic bounds for isoperimetry and slices of convex sets
Ars Inveniendi Analytica (2023)
Cet article a éte moissonné depuis la source Ars Inveniendi Analytica website
We prove that the Bourgain slicing conjecture and the
Kannan-Lov\'asz-Simonovits (KLS) isoperimetric conjecture in $\mathbb{R}^n$
hold true up to a factor of $\sqrt{\log n}$. A new ingredient used in the proof
is an improved log-concave Lichnerowicz inequality.
@article{10_15781_jsjy_0b06,
author = {Bo'az Klartag},
title = {Logarithmic bounds for isoperimetry and slices of convex sets},
journal = {Ars Inveniendi Analytica},
year = {2023},
doi = {10.15781/jsjy-0b06},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.15781/jsjy-0b06/}
}
Bo'az Klartag. Logarithmic bounds for isoperimetry and slices of convex sets. Ars Inveniendi Analytica (2023). doi: 10.15781/jsjy-0b06
Cité par Sources :