Singular behavior and generic regularity of min-max minimal
hypersurfaces
Ars Inveniendi Analytica (2022)
Cet article a éte moissonné depuis la source Ars Inveniendi Analytica website
We show that for a generic $8$-dimensional Riemannian manifold with positive
Ricci curvature, there exists a smooth minimal hypersurface. Without the
curvature condition, we show that for a dense set of 8-dimensional Riemannian
metrics there exists a minimal hypersurface with at most one singular point.
This extends previous work on generic regularity that only dealt with
area-minimizing hypersurfaces. These results are a consequence of a more
general estimate for a one-parameter min-max minimal hypersurface $\Sigma
\subset (M,g)$ (valid in any dimension): $$\mathcal H^{0}
(\mathcal{S}_{nm}(\Sigma)) +{\rm Index}(\Sigma) \leq 1$$ where
$\mathcal{S}_{nm}(\Sigma)$ denotes the set of singular points of $\Sigma$ with
a unique tangent cone non-area minimizing on either side.
@article{10_15781_j4aj_kd66,
author = {Otis Chodosh and Yevgeny Liokumovich and Luca Spolaor},
title = {Singular behavior and generic regularity of min-max minimal
hypersurfaces},
journal = {Ars Inveniendi Analytica},
year = {2022},
doi = {10.15781/j4aj-kd66},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.15781/j4aj-kd66/}
}
TY - JOUR AU - Otis Chodosh AU - Yevgeny Liokumovich AU - Luca Spolaor TI - Singular behavior and generic regularity of min-max minimal hypersurfaces JO - Ars Inveniendi Analytica PY - 2022 UR - http://geodesic.mathdoc.fr/articles/10.15781/j4aj-kd66/ DO - 10.15781/j4aj-kd66 LA - en ID - 10_15781_j4aj_kd66 ER -
Otis Chodosh; Yevgeny Liokumovich; Luca Spolaor. Singular behavior and generic regularity of min-max minimal hypersurfaces. Ars Inveniendi Analytica (2022). doi: 10.15781/j4aj-kd66
Cité par Sources :