Quantization and non-quantization of energy for higher-dimensional Ginzburg-Landau vortices
Ars Inveniendi Analytica (2023).

Voir la notice de l'article provenant de la source Ars Inveniendi Analytica website

Given a family of critical points $u_{\epsilon}:M^n\to\mathbb{C}$ for the complex Ginzburg--Landau energies \begin{align*} \epsilon(u)=\int_{M}\left(\frac{|du|^2}{2}+\frac{(1-|u|^2)^2}{4\epsilon^2}\right), \end{align*} on a manifold $M$, with natural energy growth $E_{\epsilon}(u_{\epsilon})=O(|\log\epsilon| )$, it is known that the vorticity sets $\{|u_\epsilon|\leq \frac{1}{2}\}$ converge subsequentially to the support of a stationary, rectifiable $(n-2)$-varifold $V$ in the interior, characterized as the concentrated portion of the limit $\lim_{\epsilon\to 0} \frac{e_\epsilon(u_\epsilon)}{\pi|\log\epsilon| }$ of the normalized energy measures. When $n=2$ or the solutions $u_{\epsilon}$ are energy-minimizing, it is known moreover that this varifold $V$ is integral; i.e., the $(n-2)$-density $\Theta_{n-2}(|V|,x)$ of $|V|$ takes values in $\mathbb{N}$ at $|V|$-a.e. $x\in M$. In the present paper, we show that for a general family of critical points with $E_{\epsilon}(u_{\epsilon})=O(|\log\epsilon| )$ in dimension $n\geq 3$, this energy quantization phenomenon only holds where the density is less than $2$: namely, we prove that the density $\Theta_{n-2}(|V|,x)$ of the limit varifold takes values in $\{1\}\cup [2,\infty)$ at $|V|$-a.e. $x\in M$, and show that this is sharp, in the sense that for any $n\geq 3$ and $\theta\in \{1\}\cup [2,\infty)$, there exists a family of critical points $u_{\epsilon}$ for $E_{\epsilon}$ in the ball $B_1^n(0)$ with concentration varifold $V$ given by an $(n-2)$-plane with density $\theta$.
Publié le :
DOI : 10.15781/g5bs-0m80
@article{10_15781_g5bs_0m80,
     author = {Alessandro Pigati and Daniel Stern},
     title = {Quantization and non-quantization of energy for higher-dimensional
  {Ginzburg-Landau} vortices},
     journal = {Ars Inveniendi Analytica},
     publisher = {mathdoc},
     year = {2023},
     doi = {10.15781/g5bs-0m80},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.15781/g5bs-0m80/}
}
TY  - JOUR
AU  - Alessandro Pigati
AU  - Daniel Stern
TI  - Quantization and non-quantization of energy for higher-dimensional
  Ginzburg-Landau vortices
JO  - Ars Inveniendi Analytica
PY  - 2023
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.15781/g5bs-0m80/
DO  - 10.15781/g5bs-0m80
LA  - en
ID  - 10_15781_g5bs_0m80
ER  - 
%0 Journal Article
%A Alessandro Pigati
%A Daniel Stern
%T Quantization and non-quantization of energy for higher-dimensional
  Ginzburg-Landau vortices
%J Ars Inveniendi Analytica
%D 2023
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.15781/g5bs-0m80/
%R 10.15781/g5bs-0m80
%G en
%F 10_15781_g5bs_0m80
Alessandro Pigati; Daniel Stern. Quantization and non-quantization of energy for higher-dimensional
  Ginzburg-Landau vortices. Ars Inveniendi Analytica (2023). doi : 10.15781/g5bs-0m80. http://geodesic.mathdoc.fr/articles/10.15781/g5bs-0m80/

Cité par Sources :