Quantization and non-quantization of energy for higher-dimensional
Ginzburg-Landau vortices
Ars Inveniendi Analytica (2023)
Cet article a éte moissonné depuis la source Ars Inveniendi Analytica website
Given a family of critical points $u_{\epsilon}:M^n\to\mathbb{C}$ for the
complex Ginzburg--Landau energies \begin{align*}
\epsilon(u)=\int_{M}\left(\frac{|du|^2}{2}+\frac{(1-|u|^2)^2}{4\epsilon^2}\right),
\end{align*} on a manifold $M$, with natural energy growth
$E_{\epsilon}(u_{\epsilon})=O(|\log\epsilon| )$, it is known that the vorticity
sets $\{|u_\epsilon|\leq \frac{1}{2}\}$ converge subsequentially to the support
of a stationary, rectifiable $(n-2)$-varifold $V$ in the interior,
characterized as the concentrated portion of the limit $\lim_{\epsilon\to 0}
\frac{e_\epsilon(u_\epsilon)}{\pi|\log\epsilon| }$ of the normalized energy
measures.
When $n=2$ or the solutions $u_{\epsilon}$ are energy-minimizing, it is known
moreover that this varifold $V$ is integral; i.e., the $(n-2)$-density
$\Theta_{n-2}(|V|,x)$ of $|V|$ takes values in $\mathbb{N}$ at $|V|$-a.e. $x\in
M$. In the present paper, we show that for a general family of critical points
with $E_{\epsilon}(u_{\epsilon})=O(|\log\epsilon| )$ in dimension $n\geq 3$,
this energy quantization phenomenon only holds where the density is less than
$2$: namely, we prove that the density $\Theta_{n-2}(|V|,x)$ of the limit
varifold takes values in $\{1\}\cup [2,\infty)$ at $|V|$-a.e. $x\in M$, and
show that this is sharp, in the sense that for any $n\geq 3$ and $\theta\in
\{1\}\cup [2,\infty)$, there exists a family of critical points $u_{\epsilon}$
for $E_{\epsilon}$ in the ball $B_1^n(0)$ with concentration varifold $V$ given
by an $(n-2)$-plane with density $\theta$.
@article{10_15781_g5bs_0m80,
author = {Alessandro Pigati and Daniel Stern},
title = {Quantization and non-quantization of energy for higher-dimensional
{Ginzburg-Landau} vortices},
journal = {Ars Inveniendi Analytica},
year = {2023},
doi = {10.15781/g5bs-0m80},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.15781/g5bs-0m80/}
}
TY - JOUR AU - Alessandro Pigati AU - Daniel Stern TI - Quantization and non-quantization of energy for higher-dimensional Ginzburg-Landau vortices JO - Ars Inveniendi Analytica PY - 2023 UR - http://geodesic.mathdoc.fr/articles/10.15781/g5bs-0m80/ DO - 10.15781/g5bs-0m80 LA - en ID - 10_15781_g5bs_0m80 ER -
Alessandro Pigati; Daniel Stern. Quantization and non-quantization of energy for higher-dimensional Ginzburg-Landau vortices. Ars Inveniendi Analytica (2023). doi: 10.15781/g5bs-0m80
Cité par Sources :