Sharp quantitative Faber-Krahn inequalities and the
Alt-Caffarelli-Friedman monotonicity formula
Ars Inveniendi Analytica (2023)
Cet article a éte moissonné depuis la source Ars Inveniendi Analytica website
The objective of this paper is two-fold. First, we establish new sharp
quantitative estimates for Faber-Krahn inequalities on simply connected space
forms. We prove that the gap between the first eigenvalue of a given set
$\Omega$ and that of the ball quantitatively controls both the $L^1$ distance
of this set from a ball {\it and} the $L^2$ distance between the corresponding
eigenfunctions: \[ \lambda_1(\Omega) - \lambda_1(B) \gtrsim |\Omega \Delta B|^2
+ \int |u_{\Omega} - u_B|^2, \] where $B$ denotes the nearest geodesic ball to
$\Omega$ with $|B|=|\Omega|$ and $u_\Omega$ denotes the first eigenfunction
with suitable normalization. On Euclidean space, this extends a result of
Brasco-De Phillipis-Velichkov; the eigenfunction control largely builds upon
new regularity results for minimizers of critically perturbed Alt-Cafarelli
type functionals in our companion paper. On the round sphere and hyperbolic
space, the present results are the first sharp quantitative results with
respect to any distance; here the local portion of the analysis is based on new
implicit spectral analysis techniques.
Second, we apply these sharp quantitative Faber-Krahn inequalities in order
to establish a quantitative form of the Alt-Caffarelli-Friedman (ACF)
monotonicity formula. We show that the energy drop in the ACF monotonicity
formula from one scale to the next controls how close a pair of admissible
functions is from a pair of complementary half-plane solutions. In particular,
when the square root of the energy drop summed over all scales is small, our
result implies the existence of tangents (unique blowups) of these functions.
@article{10_15781_e7f3_a487,
author = {Mark Allen and Dennis Kriventsov and Robin Neumayer},
title = {Sharp quantitative {Faber-Krahn} inequalities and the
{Alt-Caffarelli-Friedman} monotonicity formula},
journal = {Ars Inveniendi Analytica},
year = {2023},
doi = {10.15781/e7f3-a487},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.15781/e7f3-a487/}
}
TY - JOUR AU - Mark Allen AU - Dennis Kriventsov AU - Robin Neumayer TI - Sharp quantitative Faber-Krahn inequalities and the Alt-Caffarelli-Friedman monotonicity formula JO - Ars Inveniendi Analytica PY - 2023 UR - http://geodesic.mathdoc.fr/articles/10.15781/e7f3-a487/ DO - 10.15781/e7f3-a487 LA - en ID - 10_15781_e7f3_a487 ER -
%0 Journal Article %A Mark Allen %A Dennis Kriventsov %A Robin Neumayer %T Sharp quantitative Faber-Krahn inequalities and the Alt-Caffarelli-Friedman monotonicity formula %J Ars Inveniendi Analytica %D 2023 %U http://geodesic.mathdoc.fr/articles/10.15781/e7f3-a487/ %R 10.15781/e7f3-a487 %G en %F 10_15781_e7f3_a487
Mark Allen; Dennis Kriventsov; Robin Neumayer. Sharp quantitative Faber-Krahn inequalities and the Alt-Caffarelli-Friedman monotonicity formula. Ars Inveniendi Analytica (2023). doi: 10.15781/e7f3-a487
Cité par Sources :