Sharp quantitative Faber-Krahn inequalities and the Alt-Caffarelli-Friedman monotonicity formula
Ars Inveniendi Analytica (2023).

Voir la notice de l'article provenant de la source Ars Inveniendi Analytica website

The objective of this paper is two-fold. First, we establish new sharp quantitative estimates for Faber-Krahn inequalities on simply connected space forms. We prove that the gap between the first eigenvalue of a given set $\Omega$ and that of the ball quantitatively controls both the $L^1$ distance of this set from a ball {\it and} the $L^2$ distance between the corresponding eigenfunctions: \[ \lambda_1(\Omega) - \lambda_1(B) \gtrsim |\Omega \Delta B|^2 + \int |u_{\Omega} - u_B|^2, \] where $B$ denotes the nearest geodesic ball to $\Omega$ with $|B|=|\Omega|$ and $u_\Omega$ denotes the first eigenfunction with suitable normalization. On Euclidean space, this extends a result of Brasco-De Phillipis-Velichkov; the eigenfunction control largely builds upon new regularity results for minimizers of critically perturbed Alt-Cafarelli type functionals in our companion paper. On the round sphere and hyperbolic space, the present results are the first sharp quantitative results with respect to any distance; here the local portion of the analysis is based on new implicit spectral analysis techniques. Second, we apply these sharp quantitative Faber-Krahn inequalities in order to establish a quantitative form of the Alt-Caffarelli-Friedman (ACF) monotonicity formula. We show that the energy drop in the ACF monotonicity formula from one scale to the next controls how close a pair of admissible functions is from a pair of complementary half-plane solutions. In particular, when the square root of the energy drop summed over all scales is small, our result implies the existence of tangents (unique blowups) of these functions.
Publié le :
DOI : 10.15781/e7f3-a487
@article{10_15781_e7f3_a487,
     author = {Mark Allen and Dennis Kriventsov and Robin Neumayer},
     title = {Sharp quantitative {Faber-Krahn} inequalities and the
  {Alt-Caffarelli-Friedman} monotonicity formula},
     journal = {Ars Inveniendi Analytica},
     publisher = {mathdoc},
     year = {2023},
     doi = {10.15781/e7f3-a487},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.15781/e7f3-a487/}
}
TY  - JOUR
AU  - Mark Allen
AU  - Dennis Kriventsov
AU  - Robin Neumayer
TI  - Sharp quantitative Faber-Krahn inequalities and the
  Alt-Caffarelli-Friedman monotonicity formula
JO  - Ars Inveniendi Analytica
PY  - 2023
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.15781/e7f3-a487/
DO  - 10.15781/e7f3-a487
LA  - en
ID  - 10_15781_e7f3_a487
ER  - 
%0 Journal Article
%A Mark Allen
%A Dennis Kriventsov
%A Robin Neumayer
%T Sharp quantitative Faber-Krahn inequalities and the
  Alt-Caffarelli-Friedman monotonicity formula
%J Ars Inveniendi Analytica
%D 2023
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.15781/e7f3-a487/
%R 10.15781/e7f3-a487
%G en
%F 10_15781_e7f3_a487
Mark Allen; Dennis Kriventsov; Robin Neumayer. Sharp quantitative Faber-Krahn inequalities and the
  Alt-Caffarelli-Friedman monotonicity formula. Ars Inveniendi Analytica (2023). doi : 10.15781/e7f3-a487. http://geodesic.mathdoc.fr/articles/10.15781/e7f3-a487/

Cité par Sources :