On instability mechanisms for inverse problems
Ars Inveniendi Analytica (2021).

Voir la notice de l'article provenant de la source Ars Inveniendi Analytica website

In this article we present three robust instability mechanisms for linear and nonlinear inverse problems. All of these are based on strong compression properties (in the sense of singular value or entropy number bounds) which we deduce through either strong global smoothing, only weak global smoothing or microlocal smoothing for the corresponding forward operators, respectively. As applications we for instance present new instability arguments for unique continuation, for the backward heat equation and for linear and nonlinear Calder\'on type problems in general geometries, possibly in the presence of rough coefficients. Our instability mechanisms could also be of interest in the context of control theory, providing estimates on the cost of (approximate) controllability in rather general settings.
Publié le :
DOI : 10.15781/c93s-pk62
@article{10_15781_c93s_pk62,
     author = {Herbert Koch and Angkana R\"uland and Mikko Salo},
     title = {On instability mechanisms for inverse problems},
     journal = {Ars Inveniendi Analytica},
     publisher = {mathdoc},
     year = {2021},
     doi = {10.15781/c93s-pk62},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.15781/c93s-pk62/}
}
TY  - JOUR
AU  - Herbert Koch
AU  - Angkana Rüland
AU  - Mikko Salo
TI  - On instability mechanisms for inverse problems
JO  - Ars Inveniendi Analytica
PY  - 2021
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.15781/c93s-pk62/
DO  - 10.15781/c93s-pk62
LA  - en
ID  - 10_15781_c93s_pk62
ER  - 
%0 Journal Article
%A Herbert Koch
%A Angkana Rüland
%A Mikko Salo
%T On instability mechanisms for inverse problems
%J Ars Inveniendi Analytica
%D 2021
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.15781/c93s-pk62/
%R 10.15781/c93s-pk62
%G en
%F 10_15781_c93s_pk62
Herbert Koch; Angkana Rüland; Mikko Salo. On instability mechanisms for inverse problems. Ars Inveniendi Analytica (2021). doi : 10.15781/c93s-pk62. http://geodesic.mathdoc.fr/articles/10.15781/c93s-pk62/

Cité par Sources :