Distributed accelerated Nash equilibrium learning for two-subnetwork zero-sum game with bilinear coupling
Kybernetika, Tome 59 (2023) no. 3, pp. 418-436.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

This paper proposes a distributed accelerated first-order continuous-time algorithm for $O({1}/{t^2})$ convergence to Nash equilibria in a class of two-subnetwork zero-sum games with bilinear couplings. First-order methods, which only use subgradients of functions, are frequently used in distributed/parallel algorithms for solving large-scale and big-data problems due to their simple structures. However, in the worst cases, first-order methods for two-subnetwork zero-sum games often have an asymptotic or $O(1/t)$ convergence. In contrast to existing time-invariant first-order methods, this paper designs a distributed accelerated algorithm by combining saddle-point dynamics and time-varying derivative feedback techniques. If the parameters of the proposed algorithm are suitable, the algorithm owns $O(1/t^2)$ convergence in terms of the duality gap function without any uniform or strong convexity requirement. Numerical simulations show the efficacy of the algorithm.
DOI : 10.14736/kyb-2023-3-0418
Classification : 37N40, 91A10, 93A14
Keywords: two-subnetwork zero-sum game; distributed accelerated algorithm; Nash equilibrium learning; nonsmooth function; continuous-time algorithm
@article{10_14736_kyb_2023_3_0418,
     author = {Zeng, Xianlin and Dou, Lihua and Cui, Jinqiang},
     title = {Distributed accelerated {Nash} equilibrium learning for two-subnetwork zero-sum game with bilinear coupling},
     journal = {Kybernetika},
     pages = {418--436},
     publisher = {mathdoc},
     volume = {59},
     number = {3},
     year = {2023},
     doi = {10.14736/kyb-2023-3-0418},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2023-3-0418/}
}
TY  - JOUR
AU  - Zeng, Xianlin
AU  - Dou, Lihua
AU  - Cui, Jinqiang
TI  - Distributed accelerated Nash equilibrium learning for two-subnetwork zero-sum game with bilinear coupling
JO  - Kybernetika
PY  - 2023
SP  - 418
EP  - 436
VL  - 59
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2023-3-0418/
DO  - 10.14736/kyb-2023-3-0418
LA  - en
ID  - 10_14736_kyb_2023_3_0418
ER  - 
%0 Journal Article
%A Zeng, Xianlin
%A Dou, Lihua
%A Cui, Jinqiang
%T Distributed accelerated Nash equilibrium learning for two-subnetwork zero-sum game with bilinear coupling
%J Kybernetika
%D 2023
%P 418-436
%V 59
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2023-3-0418/
%R 10.14736/kyb-2023-3-0418
%G en
%F 10_14736_kyb_2023_3_0418
Zeng, Xianlin; Dou, Lihua; Cui, Jinqiang. Distributed accelerated Nash equilibrium learning for two-subnetwork zero-sum game with bilinear coupling. Kybernetika, Tome 59 (2023) no. 3, pp. 418-436. doi : 10.14736/kyb-2023-3-0418. http://geodesic.mathdoc.fr/articles/10.14736/kyb-2023-3-0418/

Cité par Sources :