$L$-fuzzy ideal degrees in effect algebras
Kybernetika, Tome 58 (2022) no. 6, pp. 996-1015
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
In this paper, considering $L$ being a completely distributive lattice, we first introduce the concept of $L$-fuzzy ideal degrees in an effect algebra $E$, in symbol $\mathfrak{D}_{ei}$. Further, we characterize $L$-fuzzy ideal degrees by cut sets. Then it is shown that an $L$-fuzzy subset $A$ in $E$ is an $L$-fuzzy ideal if and only if $\mathfrak{D}_{ei}(A)=\top,$ which can be seen as a generalization of fuzzy ideals. Later, we discuss the relations between $L$-fuzzy ideals and cut sets ($L_{\beta}$-nested sets and $L_{\alpha}$-nested sets). Finally, we obtain that the $L$-fuzzy ideal degree is an $(L,L)$-fuzzy convexity. The morphism between two effect algebras is an $(L,L)$-fuzzy convexity-preserving mapping.
DOI :
10.14736/kyb-2022-6-0996
Classification :
03B52, 03G27, 52A01
Keywords: effect algebra; $L$-fuzzy ideal degree; cut set; $(L, L)$-fuzzy convexity
Keywords: effect algebra; $L$-fuzzy ideal degree; cut set; $(L, L)$-fuzzy convexity
@article{10_14736_kyb_2022_6_0996,
author = {Wei, Xiaowei and Shi, Fu-Gui},
title = {$L$-fuzzy ideal degrees in effect algebras},
journal = {Kybernetika},
pages = {996--1015},
publisher = {mathdoc},
volume = {58},
number = {6},
year = {2022},
doi = {10.14736/kyb-2022-6-0996},
mrnumber = {4548225},
zbl = {07655868},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2022-6-0996/}
}
TY - JOUR AU - Wei, Xiaowei AU - Shi, Fu-Gui TI - $L$-fuzzy ideal degrees in effect algebras JO - Kybernetika PY - 2022 SP - 996 EP - 1015 VL - 58 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2022-6-0996/ DO - 10.14736/kyb-2022-6-0996 LA - en ID - 10_14736_kyb_2022_6_0996 ER -
Wei, Xiaowei; Shi, Fu-Gui. $L$-fuzzy ideal degrees in effect algebras. Kybernetika, Tome 58 (2022) no. 6, pp. 996-1015. doi: 10.14736/kyb-2022-6-0996
Cité par Sources :