@article{10_14736_kyb_2022_2_0254,
author = {Mart{\'\i}nez S\'anchez, Jaime and Baltazar-Larios, Fernando},
title = {Approximations of the ultimate ruin probability in the classical risk model using the {Banach's} fixed-point theorem and the continuity of the ruin probability},
journal = {Kybernetika},
pages = {254--276},
year = {2022},
volume = {58},
number = {2},
doi = {10.14736/kyb-2022-2-0254},
mrnumber = {4467496},
zbl = {07584156},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2022-2-0254/}
}
TY - JOUR AU - Martínez Sánchez, Jaime AU - Baltazar-Larios, Fernando TI - Approximations of the ultimate ruin probability in the classical risk model using the Banach's fixed-point theorem and the continuity of the ruin probability JO - Kybernetika PY - 2022 SP - 254 EP - 276 VL - 58 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2022-2-0254/ DO - 10.14736/kyb-2022-2-0254 LA - en ID - 10_14736_kyb_2022_2_0254 ER -
%0 Journal Article %A Martínez Sánchez, Jaime %A Baltazar-Larios, Fernando %T Approximations of the ultimate ruin probability in the classical risk model using the Banach's fixed-point theorem and the continuity of the ruin probability %J Kybernetika %D 2022 %P 254-276 %V 58 %N 2 %U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2022-2-0254/ %R 10.14736/kyb-2022-2-0254 %G en %F 10_14736_kyb_2022_2_0254
Martínez Sánchez, Jaime; Baltazar-Larios, Fernando. Approximations of the ultimate ruin probability in the classical risk model using the Banach's fixed-point theorem and the continuity of the ruin probability. Kybernetika, Tome 58 (2022) no. 2, pp. 254-276. doi: 10.14736/kyb-2022-2-0254
[1] Asmussen, S., Binswanger, K.: Simulation of ruin probabilities for subexponential claims. ASTIN Bull. 27 (1997), 2, 297-318. | DOI
[2] Asmussen, S., Albrecher, H.: Ruin Probabilities. World Scientific Printers 2010. | MR
[3] Bladt, M., Nielsen, B. F., Samorodnitsky, G.: Calculation of ruin probabilities for a dense class of heavy-tailed distributions. Scand. Actuar. J. (2015), 573-591. | DOI | MR
[4] Bladt, M., Nielsen, B. F.: Matrix-exponential Distributions in Applied Probability. Springer, New York 2017. | MR
[5] Cai, J., Dickson, D. C. M.: Upper bounds for ultimate ruin probabilities in the Sparre Andersen model with interest. Insurance: Math. Econom. 32 (2002), 61-71. | DOI | MR
[6] Enikeeva, F., Kalashnikov, V., Rusaityle, D.: Continuity estimates of ruin probabilities. Scand. Actuar. J. 1 (2001), 18-39. | DOI | MR
[7] Gerber, H. U.: An Introducction to Mathematical Risk Theory. S. S. Huebner Foundation, Wharton School, Philadephia 1979. | MR
[8] Gerber, H., Shiu, E.: On the time value of ruin. North Amer. Actuar. J. 2 (1998), 48-72. | DOI | MR
[9] Gordienko, E., Vázquez-Ortega, P.: Simple continuity inequalities for ruin probability in the classical risk model. ASTIN Bull. 46 (2016), 801-814. | DOI | MR
[10] Granas, A., Dugundji, J.: Fixed Point Theory. New York, Springer-Verlag 2003. | MR
[11] Hernández-Lerma, O.: Adaptive Markov Control Processes. Springer-Verlag, New York 1989. | MR | Zbl
[12] Hernández-Lerma, O., Lasserre, J. Bernard: Discrete-Time Markov Control Processes. Basic Optimality Criteria. Springer, Berlin Heidelberg, New York 1996. | MR
[13] Kallenberg, O.: Probability and Its Applications. Second edition. Springer-Verlag, New York 2002. | MR
[14] Lee, SC, Lin, XS: Modeling and evaluating insurance losses via mixtures of Erlang distributions. North Amer. Actuar. J. 14 (2010), 1, 107-130. | DOI | MR
[15] Marceau, E., Rioux, J.: On robustness in risk theory. Insurance: Math. Econom. 29 (2001), 167-185. | DOI | MR
[16] Maciak, M., Okhrin, O., Pešta, M.: Infinitely stochastic micro reserving. Insurance: Math. Econom. 100 (2021), 30-58. | DOI | MR
[17] Panjer, H.: Direct calculation of ruin probabilities. J. Risk Insur. 53 (1986), 521-529. | DOI
[18] Rachev, S.: Probability Metrics and the Stability of Stochastic Models. John Wiley and Sons, 1981. | MR
[19] Rolski, T., Schmidli, H., Teugels, J.: Stochastic Processes for Insurance and Finance. John Wiley and Sons, 1999. | MR
[20] Ross, S., Schmidli, H.: Applied Probability Models with Optimization Applications. . Holden-Day, San Francisco 1970. | MR
[21] Santana, D., González-Hernández, J., Rincón, L.: Approximation of the ultimate ruin probability in the classical risk model using Erlang mixtures. Methodol. Comput. Appl. Probab. 19, (2017), 775-798. | DOI | MR
[22] Williams, D.: Probability its Martingale. Cambridge University Press, 1991. | MR
Cité par Sources :