Keywords: constrained optimality problem; discrete-time Markov decision processes; Borel state and action spaces; varying discount factors; unbounded costs
@article{10_14736_kyb_2021_2_0295,
author = {Wu, Xiao and Tang, Yanqiu},
title = {Constrained optimality problem of {Markov} decision processes with {Borel} spaces and varying discount factors},
journal = {Kybernetika},
pages = {295--311},
year = {2021},
volume = {57},
number = {2},
doi = {10.14736/kyb-2021-2-0295},
mrnumber = {4273577},
zbl = {07396268},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2021-2-0295/}
}
TY - JOUR AU - Wu, Xiao AU - Tang, Yanqiu TI - Constrained optimality problem of Markov decision processes with Borel spaces and varying discount factors JO - Kybernetika PY - 2021 SP - 295 EP - 311 VL - 57 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2021-2-0295/ DO - 10.14736/kyb-2021-2-0295 LA - en ID - 10_14736_kyb_2021_2_0295 ER -
%0 Journal Article %A Wu, Xiao %A Tang, Yanqiu %T Constrained optimality problem of Markov decision processes with Borel spaces and varying discount factors %J Kybernetika %D 2021 %P 295-311 %V 57 %N 2 %U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2021-2-0295/ %R 10.14736/kyb-2021-2-0295 %G en %F 10_14736_kyb_2021_2_0295
Wu, Xiao; Tang, Yanqiu. Constrained optimality problem of Markov decision processes with Borel spaces and varying discount factors. Kybernetika, Tome 57 (2021) no. 2, pp. 295-311. doi: 10.14736/kyb-2021-2-0295
[1] Altman, E.: Denumerable constrained Markov decision processes and finite approximations. Math. Meth. Operat. Res. 19 (1994), 169-191. | DOI | MR
[2] Altman, E.: Constrained Markov decision processes. Chapman and Hall/CRC, Boca Raton 1999. | MR
[3] Alvarez-Mena, J., Hernández-Lerma, O.: Convergence of the optimal values of constrained Markov control processes. Math. Meth. Oper. Res. 55 (2002), 461-484. | DOI | MR
[4] Borkar, V.: A convex analytic approach to Markov decision processes. Probab. Theory Relat. Fields 78 (1988), 583-602. | DOI | MR
[5] González-Hernández, J., Hernández-Lerma, O.: Extreme points of sets of randomized strategies in constrained optimization and control problems. SIAM. J. Optim. 15 (2005), 1085-1104. | DOI | MR
[6] Guo, X. P., Hernández-del-Valle, A., Hernández-Lerma, O.: First passage problems for nonstationary discrete-time stochastic control systems. Europ. J. Control 18 (2012), 528-538. | DOI | MR | Zbl
[7] Guo, X. P., Zhang, W. Z.: Convergence of controlled models and finite-state approximation for discounted continuous-time Markov decision processes with constraints. Europ. J, Oper. Res. 238 (2014), 486-496. | DOI | MR
[8] Guo, X. P., Song, X. Y., Zhang, Y.: First passage criteria for continuous-time Markov decision processes with varying discount factors and history-dependent policies. IEEE Trans. Automat. Control 59 (2014), 163-174. | DOI | MR
[9] Hernández-Lerma, O., González-Hernández, J.: Constrained Markov Decision Processes in Borel spaces: the discounted case. Math. Meth. Operat. Res. 52 (2000), 271-285. | DOI | MR
[10] Hernández-Lerma, O., Lasserre, J. B.: Discrete-Time Markov Control Processes. Springer-Verlag, New York 1996. | MR | Zbl
[11] Hernández-Lerma, O., Lasserre, J. B.: Discrete-Time Markov Control Processes. Springer-Verlag, New York 1999. | MR | Zbl
[12] Hernández-Lerma, O., Lasserre, J. B.: Fatou's lemma and Lebesgue's convergence theorem for measures. J. Appl. Math. Stoch. Anal. 13(2) (2000), 137-146. | DOI | MR
[13] Huang, Y. H., Guo, X. P.: First passage models for denumerable semi-Markov decision processes with nonnegative discounted costs. Acta. Math. Appl. Sin-E. 27(2) (2011), 177-190. | DOI | MR | Zbl
[14] Huang, Y. H., Wei, Q. D., Guo, X. P.: Constrained Markov decision processes with first passage criteria. Ann. Oper. Res. 206 (2013), 197-219. | DOI | MR
[15] Mao, X., Piunovskiy, A.: Strategic measures in optimal control problems for stochastic sequences. Stoch. Anal. Appl. 18 (2000), 755-776. | DOI | MR
[16] Piunovskiy, A.: Optimal Control of Random Sequences in Problems with Constraints. Kluwer Academic, Dordrecht 1997. | MR
[17] Piunovskiy, A.: Controlled random sequences: the convex analytic approach and constrained problems. Russ. Math. Surv., 53 (2000), 1233-1293. | DOI | MR
[18] Prokhorov, Y.: Convergence of random processes and limit theorems in probability theory. Theory Probab Appl. 1 (1956), 157-214. | DOI | MR
[19] Wei, Q. D., Guo, X. P.: Markov decision processes with state-dependent discount factors and unbounded rewards/costs. Oper. Res. Lett. 39 (2011), 369-374. | DOI | MR
[20] Wu, X., Guo, X. P.: First passage optimality and variance minimization of Markov decision processes with varying discount factors. J. Appl. Probab. 52(2) (2015), 441-456. | DOI | MR
[21] Zhang, Y.: Convex analytic approach to constrained discounted Markov decision processes with non-constant discount factors. TOP 21 (2013), 378-408. | DOI | MR | Zbl
Cité par Sources :