Harmonic analysis of symmetric random graphs
Kybernetika, Tome 56 (2020) no. 6, pp. 1081-1089.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

This note attempts to understand graph limits as defined by Lovasz and Szegedy in terms of harmonic analysis on semigroups. This is done by representing probability distributions of random exchangeable graphs as mixtures of characters on the semigroup of unlabeled graphs with node-disjoint union, thereby providing an alternative derivation of de Finetti's theorem for random exchangeable graphs.
DOI : 10.14736/kyb-2020-6-1081
Classification : 43A35, 60B99
Keywords: characters; deFinetti's theorem; exchangeability; extreme point models; graph limits; graphons; positive definite functions; semigroups
@article{10_14736_kyb_2020_6_1081,
     author = {Lauritzen, Steffen},
     title = {Harmonic analysis of symmetric random graphs},
     journal = {Kybernetika},
     pages = {1081--1089},
     publisher = {mathdoc},
     volume = {56},
     number = {6},
     year = {2020},
     doi = {10.14736/kyb-2020-6-1081},
     mrnumber = {4199904},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2020-6-1081/}
}
TY  - JOUR
AU  - Lauritzen, Steffen
TI  - Harmonic analysis of symmetric random graphs
JO  - Kybernetika
PY  - 2020
SP  - 1081
EP  - 1089
VL  - 56
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2020-6-1081/
DO  - 10.14736/kyb-2020-6-1081
LA  - en
ID  - 10_14736_kyb_2020_6_1081
ER  - 
%0 Journal Article
%A Lauritzen, Steffen
%T Harmonic analysis of symmetric random graphs
%J Kybernetika
%D 2020
%P 1081-1089
%V 56
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2020-6-1081/
%R 10.14736/kyb-2020-6-1081
%G en
%F 10_14736_kyb_2020_6_1081
Lauritzen, Steffen. Harmonic analysis of symmetric random graphs. Kybernetika, Tome 56 (2020) no. 6, pp. 1081-1089. doi : 10.14736/kyb-2020-6-1081. http://geodesic.mathdoc.fr/articles/10.14736/kyb-2020-6-1081/

Cité par Sources :