Keywords: fault-tolerant control; robust control; flight control; control augmentation system; asymmetric elevator failures
@article{10_14736_kyb_2020_4_0767,
author = {G\"um\"u\c{s}bo\u{g}a, \.Ilkay and \.Iftar, Altu\u{g}},
title = {Fault-tolerant pitch-rate control augmentation system design for asymmetric elevator failures in a combat plane},
journal = {Kybernetika},
pages = {767--793},
year = {2020},
volume = {56},
number = {4},
doi = {10.14736/kyb-2020-4-0767},
mrnumber = {4168535},
zbl = {07286046},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2020-4-0767/}
}
TY - JOUR AU - Gümüşboğa, İlkay AU - İftar, Altuğ TI - Fault-tolerant pitch-rate control augmentation system design for asymmetric elevator failures in a combat plane JO - Kybernetika PY - 2020 SP - 767 EP - 793 VL - 56 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2020-4-0767/ DO - 10.14736/kyb-2020-4-0767 LA - en ID - 10_14736_kyb_2020_4_0767 ER -
%0 Journal Article %A Gümüşboğa, İlkay %A İftar, Altuğ %T Fault-tolerant pitch-rate control augmentation system design for asymmetric elevator failures in a combat plane %J Kybernetika %D 2020 %P 767-793 %V 56 %N 4 %U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2020-4-0767/ %R 10.14736/kyb-2020-4-0767 %G en %F 10_14736_kyb_2020_4_0767
Gümüşboğa, İlkay; İftar, Altuğ. Fault-tolerant pitch-rate control augmentation system design for asymmetric elevator failures in a combat plane. Kybernetika, Tome 56 (2020) no. 4, pp. 767-793. doi: 10.14736/kyb-2020-4-0767
[1] Alwi, H., Edwards, C.: Fault detection and fault-tolerant control of a civil aircraft using a sliding-mode-based scheme. IEEE Trans. Control Systems Technol. 16 (2008), 499-510. | DOI | MR
[2] Blakelock, J. H.: Automatic Control of Aircraft and Missiles. John Wiley and Sons, 1991.
[3] Boskovic, J. D., Raman, K. M.: A decentralized fault-tolerant control system for accommodation of failures in higher-order flight control actuators. IEEE Trans. Control Systems Technol. 18 (2009), 5, 1103-1115. | DOI
[4] Caliskan, F., Hajiyev, C.: Active fault-tolerant control of UAV dynamics against sensor-actuator failures. J. Aerospace Engrg. 29 (2016), 4, 04016012. | DOI
[5] Cavcar, M.: The International Standard Atmosphere (ISA). Technical Report, Anadolu University, 2000.
[6] Chang, B. C., Kwatny, H., Belcastro, C., Belcastro, C.: Aircraft loss-of-control accident prevention: Switching control of the GTM aircraft with elevator jam failures. In: Proc. AIAA Guidance, Navigation and Control Conference, Honolulu 2008, pp. 1-15. | DOI
[7] Eugene, A.: Global nonlinear parametric modeling with application to F-16 aerodynamics. In: Proc. American Control Conference, Philadelphia 1998, pp. 997-1001.
[8] Etkin, B., Reid, L. D.: Dynamics of Flight: Stability and Control. Wiley, New York 1996.
[9] Groves, P. D.: Principles of GNSS, Inertial, and Multisensor Integrated Navigation Systems. Artech House, 2013.
[10] Gümüşboğa, İ., İftar, A.: Pitch-rate control augmentation system design for delayed measurements. In: Proc. 6th International Conference on Control, Decision and Information Technologies, Paris 2019. | DOI
[11] Gümüşboğa, İ., İftar, A.: Modeling of asymmetrical elevator failures in the F-16 aircraft. In: Proc. AIAA SciTech Forum and Exposition, San Diego 2019. | DOI
[12] Gümüşboğa, İ., İftar, A.: Aircraft trim analysis by particle swarm optimization. J. Aeronaut Space Technol. 12 (2019), 2, 185-196.
[13] Hess, R. A., McLean, C.: Development of a Design Methodology for Reconfigurable Flight Control Systems. NASA Technical Report Server (NTRS), 2000. | DOI
[14] Hofmann-Wellenhof, B., Lichtenegger, H., Collins, J.: Global Positioning System: Theory and Practice. Springer Science and Business Media, 2012.
[15] Huo, Y.: Model of F-16 Fighter Aircraft. Technical Report, University of Southern California, 2007.
[16] Kasnakoglu, C., Kaynak, U.: Automatic recovery and autonomous navigation of disabled aircraft after control surface actuator jam. In: Proc. AIAA Guidance, Navigation, and Control Conference, Toronto 2010.
[17] Lin, C., Chun-Te, L.: Failure detection and adaptive compensation for fault tolerable flight control systems. IEEE Trans. Industr. Inform. 3 (2007), 322-331. | DOI
[18] Lu, B., Fen, W.: Switching-based fault-tolerant control for an F-16 aircraft with thrust vectoring. In: Proc. 48th IEEE Conference on Decision and Control, Shanghai 2009, pp. 322-331. | DOI
[19] Lu, P., Kampen, E. J., Visser, C., Chu, Q.: Aircraft fault-tolerant trajectory control using incremental nonlinear dynamic inversion. Control Engingrg. Practice 57 (2016), 126-141. | DOI
[20] Nelson, R. C.: Flight Stability and Automatic Control. WCB/McGraw Hill, New York 1998.
[21] Nguyen, L. T., Ogburn, M. E., Gilbert, W. P., Kibler, K. S., Brown, P. W., Deal, P. L.: Simulation Study of Stall/post-stall Characteristics of a Fighter Airplane with Relaxed Static Stability. Technical Report, NASA-TP-1538, NASA Langley Research Center, Hampton 1979. | DOI
[22] Ocana, D. T., Hyo-Sang, S., Tsourdos, A.: Development of a nonlinear reconfigurable F-16 model and flight control systems using multilayer adaptive neural networks. IFAC-PapersOnLine 48 (2015), 138-143. | DOI
[23] Petersen, I. R.: Robust $H^{\infty}$ control of an uncertain system via a stable decentralized output feedback controller. Kybernetika 45 (2009), 1, 101-120. | MR
[24] Pukdeboon, C.: Robust optimal PID controller design for attitude stabilization of flexible spacecraft. Kybernetika 54 (2018), 5, 1049-1070. | DOI | MR
[25] Roskam, J.: Airplane Flight Dynamics and Automatic Flight Controls. DARcorporation, 1998.
[26] Stevens, B. L., Lewis, F. L., Johnson, E. N.: Aircraft Control and Simulation: Dynamics, Controls Design, and Autonomous Systems. John Wiley and Sons, 2015.
[27] Tang, X., Gang, T., Suresh, M. J.: Adaptive actuator failure compensation for nonlinear MIMO systems with an aircraft control application. Automatica 43 (2007), 1869-1883. | DOI | MR
[28] Thomas, S., Harry, G. K., Bor-Chin, C.: Nonlinear reconfiguration for asymmetric failures in a six degree-of-freedom F-16. In: Proc. American Control Conference, Boston 2004, pp. 1823-1828. | DOI
[29] Zhou, K., Doyle, J. C., Glover, K.: Robust and Optimal Control. Prentice Hall, New Jersey 1996. | Zbl
[30] Wang, J., Wang, S., Wang, X., Shi, C., Tomovic, M. M.: Active fault tolerant control for vertical tail damaged aircraft with dissimilar redundant actuation system. Chinese J. Aeronautics 29 (2016), 1313-1325. | DOI
[31] Wang, X., Wang, S., Yang, Z., Zhang, C.: Active fault-tolerant control strategy of large civil aircraft under elevator failures. Chinese J. Aeronautics 28 (2015), 1658-1666. | DOI
Cité par Sources :