Keywords: optimal stochastic control; dynamic programming method; semi-Markov processes
@article{10_14736_kyb_2019_3_0495,
author = {Garc{\'\i}a, Yofre H. and Gonz\'alez-Hern\'andez, Juan},
title = {Solutions of {semi-Markov} control models with recursive discount rates and approximation by $\epsilon$-optimal policies},
journal = {Kybernetika},
pages = {495--517},
year = {2019},
volume = {55},
number = {3},
doi = {10.14736/kyb-2019-3-0495},
mrnumber = {4015995},
zbl = {07144950},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2019-3-0495/}
}
TY - JOUR AU - García, Yofre H. AU - González-Hernández, Juan TI - Solutions of semi-Markov control models with recursive discount rates and approximation by $\epsilon$-optimal policies JO - Kybernetika PY - 2019 SP - 495 EP - 517 VL - 55 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2019-3-0495/ DO - 10.14736/kyb-2019-3-0495 LA - en ID - 10_14736_kyb_2019_3_0495 ER -
%0 Journal Article %A García, Yofre H. %A González-Hernández, Juan %T Solutions of semi-Markov control models with recursive discount rates and approximation by $\epsilon$-optimal policies %J Kybernetika %D 2019 %P 495-517 %V 55 %N 3 %U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2019-3-0495/ %R 10.14736/kyb-2019-3-0495 %G en %F 10_14736_kyb_2019_3_0495
García, Yofre H.; González-Hernández, Juan. Solutions of semi-Markov control models with recursive discount rates and approximation by $\epsilon$-optimal policies. Kybernetika, Tome 55 (2019) no. 3, pp. 495-517. doi: 10.14736/kyb-2019-3-0495
[1] Arnold, L.: Stochastic Differential Equations. John Wiley and Sons, New York 1973. | MR
[2] Ash, R., Doléans-Dade, C.: Probability and Measure Theory. Academic Press, San Diego, 2000. | MR | Zbl
[3] Bhattacharya, R., Majumdar, M.: Controlled semi-Markov models - the discounted case. J. Statist. Plann. Inference 21 (1989), 3, 365-381. | DOI | MR
[4] Bertsekas, D., Shreve, S.: Stochastic Optimal Control: The Discrete Time Case. Athena Scientific, Belmont, Massachusetts 1996. | MR | Zbl
[5] Blackwell, D.: Discounted dynamic programming. Ann. Math. Statist. 36, (1965), 226-235. | DOI | MR
[6] Cani, J. De: A dynamic programming algorithm for embedded Markov chains the planning horizon is infinitely. Management. Sci. 10 (1963), 716-733. | DOI | MR
[7] Drenyovszki, R., Kovács, L., Tornai, K., Oláh, A., I., I. Pintér: Bottom-up modeling of domestic appliances with Markov chains and semi-Markov processes. Kybernetika 53 (2017), 6, 1100-1117. | DOI
[8] Dekker, R., Hordijk, A.: Denumerable semi-Markov decision chains with small interest rates. Ann. Oper. Res. 28 (1991), 185-212. | DOI | MR
[9] García, Y., González-Hernández, J.: Discrete-time Markov control process with recursive discounted rates. Kybernetika 52 (2016), 403-426. | DOI | MR
[10] González-Hernández, J., López-Martínez, R., Pérez-Hernández, J.: Markov control processes with randomized discounted cost. Math. Meth. Oper. Res. 65 (2006), 27-44. | DOI | MR | Zbl
[11] González-Hernández, J., Villarreal-Rodríguez, C.: Optimal solutions of constrained discounted semi-Markov control problems.
[12] Hernández-Lerma, O., Lasserre, J.: Discrete-Time Markov Control Processes. Basic Optimality Criteria. Springer-Verlag, New York 1996. | DOI | MR | Zbl
[13] Hu, Q., Yue, W.: Markov Decision Processes With Their Applications. Springer-Verlag, Advances in Mechanics and Mathematics book series 14, (2008). | DOI | MR
[14] Huang, X., Huang, Y.: Mean-variance optimality for semi-Markov decision processes under first passage criteria. Kybernetika 53 (2017), 1, 59-81. | DOI | MR
[15] Howard, R.: Semi-Markovian decision processes. Bull. Int. Statist. Inst. 40 (1963), 2, 625-652. | MR
[16] Jewell, W.: Markov-renewal programming I: formulation, finite return models, Markov-renewal programming II: infinite return models, example. Oper. Res. 11 (1963), 938-971. | DOI | MR
[17] Luque-Vázquez, F., Hernández-Lerma, O.: Semi-Markov control models with average costs. Appl. Math. 26 (1999), 315-331. | DOI | MR
[18] Luque-Vásquez, F., Minjárez-Sosa, J. A.: Semi-Markov control processes with unknown holding times distribution under a discounted criterion. Math. Methods Oper. Res. 61 (2005), 455-468. | DOI | MR
[19] Luque-Vásquez, F., Minjárez-Sosa, J., Rosas, L.: Semi-Markov control processes with unknown holding times distribution under an average cost criterion. Appl. Math. Optim. 61, (2010), 317-336. | DOI | MR
[20] Schweitzer, P.: Perturbation Theory and Markovian Decision Processes. Ph.D. Dissertation, Massachusetts Institute of Technology, 1965. | MR
[21] Vasicek, O.: An equilibrium characterization of the term structure. J. Financ. Econom. 5 (1977), 177-188. | DOI
[22] Vega-Amaya, O.: Average optimatily in semi-Markov control models on Borel spaces: unbounded costs and control. Bol. Soc. Mat. Mexicana 38 (1997), 2, 47-60. | MR
[23] Zagst, R.: The effect of information in separable Bayesian semi-Markov control models and its application to investment planning. ZOR - Math. Methods Oper. Res. 41 (1995), 277-288. | DOI | MR
Cité par Sources :