Keywords: vector autoregression; change point; quasi-maximum likelihood
@article{10_14736_kyb_2018_6_1122,
author = {Pr\'a\v{s}kov\'a, Zuzana},
title = {Change point detection in vector autoregression},
journal = {Kybernetika},
pages = {1122--1137},
year = {2018},
volume = {54},
number = {6},
doi = {10.14736/kyb-2018-6-1122},
mrnumber = {3902624},
zbl = {07031764},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2018-6-1122/}
}
Prášková, Zuzana. Change point detection in vector autoregression. Kybernetika, Tome 54 (2018) no. 6, pp. 1122-1137. doi: 10.14736/kyb-2018-6-1122
[1] Bai, J., Perron, P.: Estimating and testing linear models with multiple structural changes. Econometrica 66 (1998), 47-78. | DOI | MR
[2] Berkes, I., Gombay, E., Horváth, L., Kokoszka, P.: Sequential change-point detection in GARCH(p,q) models. Econometr. Theory 20 (2004), 1140-1167. | DOI | MR
[3] Mainassara, Y. Boubacar, Francq, C.: Estimating structural VARMA models with uncorrelated but non-independent error terms. J. Multivariate Anal. 102 (2011), 496-505. | DOI | MR
[4] Carsoule, F., Franses, P. H.: A note on monitoring time-varying parameters in an autoregression. | DOI
[5] Chu, C.-S. J., Stinchcombe, M., White, H.: Monitoring structural change. | DOI
[6] Davidson, J.: Stochastic Limit Theory. Oxford University Press, Oxford 1994. | DOI | MR
[7] Dvořák, M.: Stability in Autoregressive Time Series Models. Ph.D. Dissertation, Charles University, Prague 2015.
[8] Gombay, E., Serban, D.: Monitoring parameter change in AR(p) time series models. | DOI
[9] Hamilton, J. D.: Time Series Analysis. Princeton University Press, Princeton 1994. | DOI | MR
[10] Horváth, L., Hušková, M., Kokoszka, P., Steinebach, J.: Monitoring changes in linear models. | DOI
[11] Hlávka, Z., Hušková, M., Kirch, C., Meintanis, S. G.: Monitoring changes in the error distribution of autoregressive models based on Fourier methods. Test 21 (2012), 605-634. | DOI | MR
[12] Hušková, M., Koubková, A.: Sequential procedures for detection of changes in autoregressive sequences.
[13] Kuelbs, J., Philipp, W.: Almost sure invariance principles for partial sums of mixing $B-$valued random variables. | DOI
[14] Li, F., Tian, Z., Qi, P.: Structural change monitoring for random coefficient autoregressive time series. Comm. Statist. Simulation Comput. 44 (2015), 996-1009. | DOI | MR
[15] Lee, S., Lee, Y., Na, O.: Monitoring distributional changes in autoregressive models. | DOI
[16] Lütkepohl, H.: New Introduction to Multiple Time Series Analysis. Springer-Verlag, Berlin 2005. | DOI | MR
[17] Na, O., Lee, J., Lee, S.: Monitoring parameter changes for random coefficient autoregressive models. | DOI
[18] Prášková, Z.: Monitoring changes in RCA models. In: Stochastic Models, Statistics and Their Applications, Springer Proceedings in Mathematics and Statistics 122 (A. Steland, E. Rafajlowicz and K. Szajowski, eds.), Springer, Berlin 2015, pp. 129-137. | DOI | MR
[19] Straumann, D.: Estimation in Conditionally Heteroscedastic Time Series Models. Lecture Notes in Statistics 181, Springer, Berlin 2005. | DOI | MR
Cité par Sources :