Robust sampled-data observer design for Lipschitz nonlinear systems
Kybernetika, Tome 54 (2018) no. 4, pp. 699-717
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
In this paper, a robust sampled-data observer is proposed for Lipschitz nonlinear systems. Under the minimum-phase condition, it is shown that there always exists a sampling period such that the estimation errors converge to zero for whatever large Lipschitz constant. The optimal sampling period can also be achieved by solving an optimal problem based on linear matrix inequalities (LMIs). The design methods are extended to Lipschitz nonlinear systems with large external disturbances as well. In such a case, the estimation errors converge to a small region of the origin. The size of the region can be small enough by selecting a proper parameter. Compared with the existing results, the design parameters can be easily obtained by solving LMIs.
DOI :
10.14736/kyb-2018-4-0699
Classification :
93B51, 93C57
Keywords: sampled-data observer; nonlinear systems; Lipschitz; sampling period; LMIs
Keywords: sampled-data observer; nonlinear systems; Lipschitz; sampling period; LMIs
@article{10_14736_kyb_2018_4_0699,
author = {Yu, Yu and Shen, Yanjun},
title = {Robust sampled-data observer design for {Lipschitz} nonlinear systems},
journal = {Kybernetika},
pages = {699--717},
publisher = {mathdoc},
volume = {54},
number = {4},
year = {2018},
doi = {10.14736/kyb-2018-4-0699},
mrnumber = {3863251},
zbl = {06987029},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2018-4-0699/}
}
TY - JOUR AU - Yu, Yu AU - Shen, Yanjun TI - Robust sampled-data observer design for Lipschitz nonlinear systems JO - Kybernetika PY - 2018 SP - 699 EP - 717 VL - 54 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2018-4-0699/ DO - 10.14736/kyb-2018-4-0699 LA - en ID - 10_14736_kyb_2018_4_0699 ER -
Yu, Yu; Shen, Yanjun. Robust sampled-data observer design for Lipschitz nonlinear systems. Kybernetika, Tome 54 (2018) no. 4, pp. 699-717. doi: 10.14736/kyb-2018-4-0699
Cité par Sources :