Keywords: sampled-data observer; nonlinear systems; Lipschitz; sampling period; LMIs
@article{10_14736_kyb_2018_4_0699,
author = {Yu, Yu and Shen, Yanjun},
title = {Robust sampled-data observer design for {Lipschitz} nonlinear systems},
journal = {Kybernetika},
pages = {699--717},
year = {2018},
volume = {54},
number = {4},
doi = {10.14736/kyb-2018-4-0699},
mrnumber = {3863251},
zbl = {06987029},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2018-4-0699/}
}
TY - JOUR AU - Yu, Yu AU - Shen, Yanjun TI - Robust sampled-data observer design for Lipschitz nonlinear systems JO - Kybernetika PY - 2018 SP - 699 EP - 717 VL - 54 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2018-4-0699/ DO - 10.14736/kyb-2018-4-0699 LA - en ID - 10_14736_kyb_2018_4_0699 ER -
Yu, Yu; Shen, Yanjun. Robust sampled-data observer design for Lipschitz nonlinear systems. Kybernetika, Tome 54 (2018) no. 4, pp. 699-717. doi: 10.14736/kyb-2018-4-0699
[1] Ahrens, J., Tan, X., Khalil, H.: Multirate sampled-data output feedback control with application to smart material actuated systems. IEEE Trans. Automat. Control 54 (2009), 2518-2529. | DOI | MR
[2] Boutat, D.: Extended nonlinear observer normal forms for a class of nonlinear dynamical systems. Int. J. Robust Nonlinear Control 25 (2015), 461-474. | DOI | MR
[3] Boyd, S., Ghaoui, L., al., E. Feron et: Linear Matrix Inequalities in System and Control Theory. Society for Industrial and Applied Mathematics, ch. 1.2, Philadelphia 1994. | DOI | MR
[4] Chen, M., Chen, C.: Robust nonlinear observer for Lipschitz nonlinear systems subject to disturbances. IEEE Trans. Automat. Control 52 (2007), 2365-2369. | DOI | MR
[5] Dezuo, T., Trofino, A.: LMI conditions for designing rational nonlinear observers. In: 2014 American Control Conference. 47 (2014), 5343-5348. | DOI
[6] Dinh, T., Andrieu, V., Nadri, M., al., et: Continuous-discrete time observer design for Lipschitz systems with sampled measurements. IEEE Trans. Automat. Control 60 (2015), 787-792. | DOI | MR
[7] Dong, Y., Liu, J., Mei, S.: Observer design for a class of nonlinear discrete-time systems with time-delay. Kybernetika 49 (2013), 341-358. | MR | Zbl
[8] Doyle, J., Stein, G.: Robustness with observers. IEEE Trans. Automatic Control 24 (1979), 607-611. | DOI | MR
[9] Ekramian, M., Sheikholeslam, F., al., S. Hosseinnia et: Adaptive state observer for Lipschitz nonlinear systems. Systems Control Lett. 62 (2013), 319-323. | DOI | MR
[10] Gupta, M., Tomar, N., Bhaumik, S.: Observer Design for Descriptor Systems with Lipschitz Nonlinearities: An LMI Approach. Nonlinear Dynamics Systems Theory 14 (2014), 291-301. | MR
[11] Kang, W., Krener, A., al., M. Xiao et: A survey of observers for nonlinear dynamical systems. In: Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications, Vol. II, Springer Berlin Heidelberg 2013, pp. 1-25. | DOI
[12] Khalil, H.: Nonlinear System. Upper Saddle River, Prentice Hall, ch. 14.5, NJ 2000.
[13] Kwakernaak, H., Sivan, R.: Linear Optimal Control Systems. Wiley, ch. 3, Theorem 3.14, New York 1972. | MR
[14] Lewis, F.: Applied Optimal Control and Estimation. Englewood Cliffs, Prentice-Hall, ch. 3, Theorem 2, NJ 1992.
[15] Marino, R., Tomei, P.: Nonlinear control design. Automatica 33 (2009), 1769-1770. | DOI
[16] Nešić, D., Teel, A.: A framework for stabilization of nonlinear sampled-data systems based on their approximate discrete-time models. IEEE Trans. Automat. Control 49 (2004), 1103-1122. | DOI | MR
[17] Oucief, N., Tadjine, M., Labiod, S.: Adaptive observer-based fault estimation for a class of Lipschitz nonlinear systems. Archives Control Sci. 26 (2016), 245-259. | DOI | MR
[18] Pan, J., Meng, M., Feng, J.: A note on observers design for one-sided Lipschitz nonlinear systems. In: Control Conference IEEE (2015), pp. 1003-1007. | DOI
[19] Perez, C., Mera, M.: Robust observer-based control of switched nonlinear systems with quantized and sample output. Kybernetika 54 (2015), 59-80. | DOI | MR
[20] Rehák, B.: Sum-of-squares based observer design for polynomial systems with a known fixed time delay. Kybernetika 51 (2015), 856-873. | DOI | MR
[21] Saberi, A., Sannuti, P., Chen, B.: $H_2$ Optimal Control. Englewood Cliffs, Prentice-Hall, ch. 4, Theorem 4.1.2, NJ 1995.
[22] Shen, Y., Zhang, D., Xia, X.: Continuous output feedback stabilization for nonlinear systems based on sampled and delayed output measurements. Internat. J. Robust and Nonlinear Control 26 (2016), 3075-3087. | DOI | MR | Zbl
[23] Shen, Y., Zhang, D., Xia, X.: Continuous observer design for a class of multi-output nonlinear systems with multi-rate sampled and delayed output measurements. Automatica 75 (2017), 127-132. | DOI | MR
[24] Stein, G., Athans, M.: The LQG/LTR procedure for multivariable feedback control design. IEEE Trans. Automat. Control 32 (1987), 105-114. | DOI
[25] Tahir, A., Magri, A., Ahmed-Ali, T., al., et: Sampled-data nonlinear observer design for sensorless synchronous PMSM. IFAC-Papers OnLine 48 (2015), 327-332. | DOI
[26] Thau, F.: Observing the state if nonlinear dynamic systems. Int. J. Control 17 (1973), 471-479. | DOI
[27] Wang, Y., Liu, X., Xiao, J., Shen, Y.: Output formation-containment of interacted heterogeneous linear systems by distributed hybrid active control. Automatica 93 (2018), 26-32. | DOI | MR
[28] Yu, L.: Robust Control: Linear Matrix Inequality Approach. Tsinghua University Press 2002.
[29] Zemouche, A., Boutayeb, M.: On LMI conditions to design observers for Lipschitz nonlinear systems. Automatica 49 (2013), 585-591. | DOI | MR
[30] Zhang, D., Shen, Y. J.: Continuous sampled-data observer design for nonlinear systems with time delay larger or samller than the sampling period. IEEE Trans. Automat. Control 62 (2017), 5822-5829. | DOI | MR
[31] Zhang, D., Shen, Y., Xia, X.: Globally uniformly ultimately bounded observer design for a class of nonlinear systems with sampled and delayed measurements. Kybernetika 52 (2016), 441-460. | DOI | MR
[32] Zhang, W., Su, H., al., S. Su et: Nonlinear $H_\infty$ observer design for one-sided Lipschitz systems. Neurocomputing (2014), 505-511.
[33] Zhang, W., Su, H., al., F. Zhu et: A note on observers for discrete-time Lipschitz nonlinear systems. IEEE Trans. Circuits Systems II Express Briefs 29 (2012), 123-127. | DOI
[34] Zhou, Y., Soh, Y., Shen, J.: High-gain observer with higher order sliding mode for state and unknown disturbance estimations. Int. J. Robust abd Nonlinear Control 24 (2016), 2136-2151. | DOI | MR
Cité par Sources :