Keywords: uninorm; internal operator; ordinal sum; residual implication; triangular subnorm
@article{10_14736_kyb_2018_3_0427,
author = {Li, Gang},
title = {On a special class of left-continuous uninorms},
journal = {Kybernetika},
pages = {427--442},
year = {2018},
volume = {54},
number = {3},
doi = {10.14736/kyb-2018-3-0427},
mrnumber = {3844826},
zbl = {06987016},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2018-3-0427/}
}
Li, Gang. On a special class of left-continuous uninorms. Kybernetika, Tome 54 (2018) no. 3, pp. 427-442. doi: 10.14736/kyb-2018-3-0427
[1] Aguiló, I., Suñer, J., Torrens, J.: A characterization of residual implications derived from left-continuous uninorms. Inform. Sci. 180 (2010), 3992-4005. | DOI | MR
[2] Alsina, C., Frank, M. J., Schweizer, B.: Associative Functions. Triangular Norms and Copulas. World Scientific, New Jersey 2006. | DOI | MR
[3] Baczyński, M., Jayaram, B.: Fuzzy Implications. Springer, Berlin, Herdelberg 2008. | Zbl
[4] Baets, B. De: An order-theoretic approach to solving sup-T equations. In: Fuzzy Set Theory and Advanced Mathemtical Applications (D. Ruan, ed.), Kluwer, Dordrecht 1995, pp. 67-87. | DOI
[5] Baets, B. De, Fodor, J.: Residual operators of uninorms. Soft Comput. 3 (1999), 89-100. | DOI | MR
[6] Baets, B. De, Fodor, J.: Van Melle's combining function in MYCIN is a representable uninorm: An alternative proof. Fuzzy Sets Systems 104 (1999), 133-136. | DOI | MR | Zbl
[7] Baets, B. De: Idempotent uninorms. Eur. J. Oper. Res. 118 (1998), 631-642. | DOI | Zbl
[8] Baets, B. De, Kwasnikowska, N., Kerre, E.: Fuzzy morphology based on uninorms. In: Seventh IFSA World Congress, Prague, 220 (1997), 215-220.
[9] Baets, B. De, Fodor, J., Ruiz-Aguilera, D., Torrens, J.: Idempotent uninorms on finite ordinal scales. Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 17 (2009), 1-14. | DOI | MR | Zbl
[10] Clifford, A. H.: Naturally totally ordered commutative semigroups. Amer. J. Math. 76 (1954), 631-646. | DOI | MR
[11] Csiszár, O., Fodor, J.: On uninorms with fixed values along their border. Ann. Univ. Sci. Bundapest., Sect. Com. 42 (2014), 93-108. | MR
[12] Czogała, E., Drewniak, J.: Associative monotonic operations in fuzzy set theory. Fuzzy Sets Systems 12 (1984), 249-269. | DOI | MR
[13] Drygaś, P.: Discussion of the structure of uninorms. Kybernetika 41 (2005), 213-226. | DOI | MR | Zbl
[14] Drygaś, P.: On the structure of continuous uninorms. Kybernetika 43 (2007), 183-196. | MR | Zbl
[15] Drygaś, P.: On properties of uninorms with underlying t-norm and t-conorm given as ordinal sums. Fuzzy Sets Systems 161 (2010), 149-157. | DOI | MR | Zbl
[16] Drygaś, P., Ruiz-Aguilera, D., Torrens, J.: A characterization of a class of uninorms with continuous underlying operators. Fuzzy Sets Systems 287 (2016), 137-153. | DOI | MR
[17] Esteva, F., Godo, L.: Monoidal t-norm based logic: owards a logic for left-continuous t-norms. Fuzzy Sets Systems 124 (2001), 271-288. | DOI | MR
[18] Fodor, J., Yager, R. R., Rybalov, A.: Structure of uninorms. Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 5 (1997), 411-427. | DOI | MR | Zbl
[19] Fodor, J., Baets, B. De: A single-point characterization of representable uninorms. Fuzzy Sets Systems 202 (2012), 89-99. | DOI | MR | Zbl
[20] Hu, S., Li, Z.: The structure of continuous uninorms. Fuzzy Sets Systems 124 (2001), 43-52. | DOI | MR
[21] Jenei, S.: A note on the ordinal sum theorem and its consequence for the construction of triangular norms. Fuzzy Sets Systems 126 (2002), 199-205. | DOI | MR
[22] Klement, E. P., Mesiar, R., Pap, E.: Triangular Norms. Kluwer Academic Publishers, Dordrecht 2000. | MR | Zbl
[23] Klement, E. P., Mesiar, R., Pap, E.: Integration with respect to decomposable measures, based on a conditionally distributive semiring on the unit interval. Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 8 (2000), 707-717. | DOI | MR
[24] Li, G., Liu, H-W., Fodor, J.: Single-point characterization of uninorms with nilpotent underlying t-norm and t-conorm. Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 22 (2014), 591-604. | DOI | MR
[25] Li, G., Liu, H-W., Fodor, J.: On almost equitable uninorms. Kybernetika 51(4) (2015), 699-711. | DOI | MR
[26] Li, G., Liu, H-W.: Distributivity and conditional distributivity of a uninorm with continuous underlying operators over a continuous t-conorm. Fuzzy Sets Systems 287 (2016), 154-171. | DOI | MR
[27] Li, G., Liu, H-W.: On Relations Between Several Classes of Uninorms. In: Fan TH., Chen SL., Wang SM., Li YM. (eds) Quantitative Logic and Soft Computing 2016. Advances in Intelligent Systems and Computing, vol. 510. Springer, 2017, pp. 251-259. | DOI
[28] Li, G., Liu, H-W.: On properties of uninorms locally internal on the boundary. Fuzzy Sets Systems 332 (2017), 116-128. | DOI | MR
[29] Martin, J., Mayor, G., Torrens, J.: On locally internal monotonic operations. Fuzzy Sets Systems 137(1) (2003), 27-42. | DOI | MR | Zbl
[30] Massanet, S., Torrens, J.: The law of implication versus the exchange principle on fuzzy implications. Fuzzy Sets Systems 168 (2011), 47-69. | DOI | MR
[31] Mas, M., Massanet, S., Ruiz-Aguilera, D., Torrens, J.: A survey on the existing classes of uninorms. J. Intell. Fuzzy Systems 29(3) (2015), 1021-1037. | DOI | MR
[32] Mesiarová, A.: Multi-polar t-conorms and uninorms. Inform. Sci. 301 (2015), 227-240. | DOI | MR
[33] Mesiarová, A.: Characterization of uninorms with continuous underlying t-norm and t-conorm by their set of discontinuity points. IEEE Trans. Fuzzy Systems PP (2017), in press. | MR
[34] Mesiarová, A.: Characterization of uninorms with continuous underlying t-norm and t-conorm by means of the ordinal sum construction. Int. J. Approx. Reason. 87 (2017), 176-192. | DOI | MR
[35] Noguera, C., Esteva, F., Godo, L.: Generalized continuous and left-continuous t-norms arising from algebraic semantics for fuzzy logics. Inform. Sci. 180 (2010), 1354-1372. | DOI | MR
[36] Petrík, M., Mesiar, R.: On the structure of special classes of uninorms. Fuzzy Sets Systems 240 (2014), 22-38. | DOI | MR | Zbl
[37] Pouzet, M., Rosenberg, I. G., Stone, M. G.: A projection property. Algebra Univers. 36(2) (1996), 159-184. | DOI | MR
[38] Qin, F., Zhao, B.: The distributive equations for idempotent uninorms and nullnorms. Fuzzy Sets Systems 155 (2005), 446-458. | DOI | MR | Zbl
[39] Ruiz, D., Torrens, J.: Residual implications and co-implications from idempotent uninorms. Kybernetika 40 (2004), 21-38. | MR | Zbl
[40] Ruiz, D., Torrens, J.: Distributivity and conditional distributivity of a uninorm and a continuous t-conorm. IEEE Trans. Fuzzy Systems 14 (2006), 2, 180-190. | DOI
[41] Ruiz-Aguilera, D., Torrens, J.: R-implications and S-implications from uninorms continuous in $]0,1[^{2}$ and their distributivity over uninorms. Fuzzy Sets Systems 160 (2009), 832-852. | DOI | MR
[42] Ruiz-Aguilera, D., Torrens, J., Baets, B. De, Fodor, J.: Some remarks on the characterization of idempotent uninorms. In: IPMU 2010, LNAI 6178, Eds. E.Hüllermeier, R.Kruse and F.Hoffmann, Springer-Verlag Berlin Heidelberg 2010, pp. 425-434. | DOI
[43] Ruiz-Aguilera, D., Torrens, J.: A characterization of discrete uninorms having smooth underlying operators. Fuzzy Sets Syst. 268 (2015), 44-58. | DOI | MR
[44] Takács, M.: Uninorm-based models for FLC systems. J. Intell. Fuzzy Systems 19 (2008), 65-73.
[45] Yager, R., Rybalov, A.: Uninorm aggregation operators. Fuzzy Sets Systems 80 (1996), 111-120. | DOI | MR | Zbl
[46] Yager, R., Rybalov, A.: Bipolar aggregation using the uninorms. Fuzzy Optim. Decis. Making 10 (2011), 59-70. | DOI | MR
[47] Yager, R.: Uninorms in fuzzy systems modeling. Fuzzy Sets Systems 122 (2001), 167-175. | DOI | MR | Zbl
Cité par Sources :