Keywords: Kolmogorov distance; $\phi $-divergence; minimum distance estimator; consistency rate; computer simulation
@article{10_14736_kyb_2018_2_0336,
author = {K\r{u}s, V\'aclav and Morales, Domingo and Hrab\'akov\'a, Jitka and Fr\'ydlov\'a, Iva},
title = {Existence, {Consistency} and computer simulation for selected variants of minimum distance estimators},
journal = {Kybernetika},
pages = {336--350},
year = {2018},
volume = {54},
number = {2},
doi = {10.14736/kyb-2018-2-0336},
mrnumber = {3807719},
zbl = {06890424},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2018-2-0336/}
}
TY - JOUR AU - Kůs, Václav AU - Morales, Domingo AU - Hrabáková, Jitka AU - Frýdlová, Iva TI - Existence, Consistency and computer simulation for selected variants of minimum distance estimators JO - Kybernetika PY - 2018 SP - 336 EP - 350 VL - 54 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2018-2-0336/ DO - 10.14736/kyb-2018-2-0336 LA - en ID - 10_14736_kyb_2018_2_0336 ER -
%0 Journal Article %A Kůs, Václav %A Morales, Domingo %A Hrabáková, Jitka %A Frýdlová, Iva %T Existence, Consistency and computer simulation for selected variants of minimum distance estimators %J Kybernetika %D 2018 %P 336-350 %V 54 %N 2 %U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2018-2-0336/ %R 10.14736/kyb-2018-2-0336 %G en %F 10_14736_kyb_2018_2_0336
Kůs, Václav; Morales, Domingo; Hrabáková, Jitka; Frýdlová, Iva. Existence, Consistency and computer simulation for selected variants of minimum distance estimators. Kybernetika, Tome 54 (2018) no. 2, pp. 336-350. doi: 10.14736/kyb-2018-2-0336
[1] Mohamad, D. Al: Towards a better understanding of the dual representation of phi divergences. Statistical Papers (published on-line 2016.) | DOI
[2] Barron, A. R.: The convergence in information of probability density estimators. In: IEEE Int. Symp. Information Theory, Kobe 1988.
[3] Beran, R.: Minimum Hellinger distance estimator for parametric models. Ann. Statist. 5 (1977), 455-463. | DOI | MR
[4] Berger, A.: Remark on separable spaces of probability measures. An. Math. Statist. 22 (1951), 119-120. | DOI | MR
[5] Broniatowski, M., Toma, A., Vajda, I.: Decomposable pseudodistances and applications in statistical estimation. J. Statist. Plann. Inference. 142 (2012), 9, 2574-2585. | DOI | MR
[6] Csiszár, I.: Eine Informationstheoretische Ungleichung und ihre Anwendung auf den Beweis der Ergodizit on Markhoffschen Ketten. Publ. Math. Inst. Hungar. Acad. Sci., Ser. A 8 (1963), 84-108. | MR
[7] Csiszár, I.: Information-type measures of difference of probability distributions and indirect observations. Studia Sci. Math. Hungar. 2 (1967), 299-318. | MR
[8] Frýdlová, I., Vajda, I., Kůs, V.: Modified power divergence estimators in normal model - simulation and comparative study. Kybernetika 48 (2012), 4, 795-808. | MR
[9] Gibbs, A. L., Su, F. E.: On choosing and bounding probability metrics. Int. Statist. Rev. 70 (2002), 419-435. | DOI
[10] Győrfi, L., Vajda, I., Meulen, E. C. van der: Family of point estimates yielded by $L_1$-consistent density estimate. In: $L_1$-Statistical Analysis and Related Methods (Y. Dodge, ed.), Elsevier, Amsterdam 1992, pp. 415-430. | MR
[11] Győrfi, L., Vajda, I., Meulen, E. C. van der: Minimum Hellinger distance point estimates consistent under weak family regularity. Math. Methods Statist. 3 (1994), 25-45. | MR
[12] Győrfi, L., Vajda, I., Meulen, E. C. van der: Minimum Kolmogorov distance estimates of parameters and parametrized distributions. Metrika 43 (1996), 237-255. | DOI | MR
[13] Hrabáková, J., Kůs, V.: The Consistency and Robustness of Modified Cramér-Von Mises and Kolmogorov-Cramér Estimators. Comm. Statist. - Theory and Methods 42 (2013), 20, 3665-3677. | DOI | MR
[14] Hrabáková, J., Kůs, V.: Notes on consistency of some minimum distance estimators with simulation results. Metrika 80 (2017), 243-257. | DOI | MR
[15] Kafka, P., Ősterreicher, F., Vincze, I.: On powers of $f$-divergences defining a distance. Studia Sci. Mathem. Hungarica 26 (1991), 415-422. | MR
[16] Kůs, V.: Blended $\phi$-divergences with examples. Kybernetika 39 (2003), 43-54. | MR
[17] Kůs, V.: Nonparametric Density Estimates Consistent of the Order of $n^{-1/2}$ in the $L_1$-norm. Metrika 60 (2004), 1-14. | DOI | MR
[18] Kůs, V., Morales, D., Vajda, I.: Extensions of the parametric families of divergences used in statistical inference. Kybernetika 44 (2008), 1, 95-112. | MR
[19] Cam, L. Le: Asymptotic Methods in Statistical Decision Theory. Springer, New York 1986. | DOI | MR
[20] Liese, F., Vajda, I.: Convex Statistical Distances. Teubner, Leipzig 1987. | MR
[21] Liese, F., Vajda, I.: On divergences and informations in statistics and information theory. IEEE Trans. Inform. Theory 52 (2006), 4394-4412. | DOI | MR
[22] Matusita, K.: Distance and decision rules. Ann. Inst. Statist. Math. 16 (1964), 305-315. | DOI | MR
[23] Ősterreicher, F.: On a class of perimeter-type distances of probability distributions. Kybernetika 32 (1996), 4, 389-393. | MR
[24] Pardo, L.: Statistical Inference Based on Divergence Measures. Chapman and Hall, Boston 2006. | DOI | MR
[25] Pfanzagl, J.: Parametric Statistical Theory. W. de Gruyter, Berlin 1994. | DOI | MR
[26] Vajda, I.: Theory of Statistical Inference and Information. Kluwer, Boston 1989.
Cité par Sources :