Keywords: weighting order statistics of the squared residuals; consistency of the instrumental weighted variables; heteroscedasticity of disturbances; numerical study
@article{10_14736_kyb_2017_1_0001,
author = {V{\'\i}\v{s}ek, Jan \'Amos},
title = {Instrumental weighted variables under heteroscedasticity. {Part} {I} {\textendash} {Consistency}},
journal = {Kybernetika},
pages = {1--25},
year = {2017},
volume = {53},
number = {1},
doi = {10.14736/kyb-2017-1-0001},
mrnumber = {3638554},
zbl = {06738592},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2017-1-0001/}
}
TY - JOUR AU - Víšek, Jan Ámos TI - Instrumental weighted variables under heteroscedasticity. Part I – Consistency JO - Kybernetika PY - 2017 SP - 1 EP - 25 VL - 53 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2017-1-0001/ DO - 10.14736/kyb-2017-1-0001 LA - en ID - 10_14736_kyb_2017_1_0001 ER -
Víšek, Jan Ámos. Instrumental weighted variables under heteroscedasticity. Part I – Consistency. Kybernetika, Tome 53 (2017) no. 1, pp. 1-25. doi: 10.14736/kyb-2017-1-0001
[1] Amemiya, T.: Two stage least absolute deviation estimators. Econometrica 50 (1982), 689-711. | DOI | MR
[2] Atkinson, A. C., Riani, M., Cerioli, A.: Exploring Multivariate Data with the Forward Search. Springer Series in Statistics 2004, 31-88. | DOI | MR | Zbl
[3] Beran, R.: An efficient and robust adaptive estimator of location. Ann. Statist. 6 (1978), 292-313. | DOI | MR | Zbl
[4] Bowden, R. J., Turkington, D. A.: Instrumental variables. Cambridge Univ. Press, Cambridge 1984. | DOI | MR | Zbl
[5] Bramati, C. M., Croux, C.: Robust estimators for the fixed effects panel data model. The Econometr. J. 10 (2077), 521-540. | DOI | Zbl
[6] Breiman, L.: Probability. Addison-Wesley Publishing Company, London 1968. | MR | Zbl
[7] Čížek, P.: Generalized method of trimmed moments. J. Statist. Planning Inference 171 (2009), 63-78. | DOI | MR | Zbl
[8] Cochrane, D., Orcutt, G. H.: Application of least squares regression to relationhips containing autocorrelated error terms. J. Amer. Statist. Assoc. 44 (1949), 32-61. | DOI
[9] Cohen-Freue, G. V., Ortiz-Molina, H., Zamar, R. H.: A New Robust Instrumental Variables Estimator.
[10] Cohen-Freue, G. V., Ortiz-Molina, H., Zamar, R. H.: Natural robustification of the ordinary instrumental variables estimator. Biometrics 69 (2013), 641-650. | DOI | MR
[11] Croux, C., Aelst, S. Van, Dehon, C.: Bounded influence regression using high breakdown scatter matrices. Ann. Inst. Statist. Math. 55 (2013), 265-285. | DOI | MR
[12] Davies, P. L.: Asymptotic behavior of $S$-estimates of multivariate location parameters and dispersion matrices. Ann. Statist. 15 (1987), 1269-1292. | DOI | MR
[13] (1952), M. Donsker: Justification and extension of Doob's heuristic approach to the Kolmogorov-Smirnov theorems. Ann. Math. Statist. 23 (1952), 277-281. | DOI | MR
[14] Eicker, F.: Asymptotic normality and consistency of the least squares estimators for families of linear regressions. Ann. Math. Stat. 34 (1963), 447-456. | DOI | MR | Zbl
[15] Eicker, F.: Limit theorems for regression with unequal and dependent errors. In: Proc. Fifth Berkeley Symposium on Mathematical Statistics and Probability (L. Le Cam and J. Neyman, eds.), University of California Press, Berkeley 1967. | MR
[16] Fabián, Z.: Induced cores and their use in robust parametric estimation. Comm. Statist. - Theory and Methods 30 (2001), 537-555. | DOI | MR | Zbl
[17] Fabián, Z.: New measures of central tendency and variability of continuous distributions. Comm. Statist. - Theory and Methods 37 (2008), 159-174. | DOI | MR | Zbl
[18] Field, C. A., (1990), E. M. Ronchetti: Small Sample Asymptotics. Institute of Mathematical Statistics Monograph Series, Hayward 1990. | MR
[19] Fisher, R. A.: A mathematical examination of the methods of determining the accuracy of an observation by the mean error and by the mean squares error. Monthly Notes Royal Astronomical Society 80 (1920), 758-770. | DOI
[20] Fisher, R. A.: Statistical Methods for Research Workers. Second edition. (1928). | MR
[21] Galton, F.: Regression towards mediocrity in hereditary stature. J. Anthropol. Inst. 15 (1886), 246-263. | DOI
[22] Greene, W. H.: Econometric Analysis. Macmillam Press, New York 1993.
[23] Hájek, J., Šidák, Z.: Theory of Rank Test. Academic Press, New York 1967. | MR
[24] Halmos, P. R.: Applied mathematics is a bad mathematics. In: Mathematics Tomorrow (L. Steen, ed.), Springer Verlag, New York 1981, pp. 9-20. | DOI | MR
[25] Hampel, F. R., Ronchetti, E. M., Rousseeuw, P. J., Stahel, W. A.: Robust Statistics - The Approach Based on Influence Functions. J. Wiley and Sons, New York 1986. | DOI | MR
[26] Hansen, L. P.: Large sample properties of generalized method of moments estimators. Econometrica 50 (1982), 1029-1054. | DOI | MR | Zbl
[27] Harvey, A. C.: Estimating regression models with multiplicative heteroscedasticity. Econometrica 44 (1976), 461-465. | DOI | MR | Zbl
[28] Hausman, J., Newey, W., Voutersen, T., Chao, J., Swanson, N.: Instrumental variable estimation with heteroscedasticity and many instruments. Quantitative Economics 3 (2012), 211-255. | DOI | MR
[29] Helland, I. S.: Partial Least Squares Regression and Statistical Models. Scand. J. Statist. 17 (1990), 97-114. | MR | Zbl
[30] Hettmansperger, T. P., Sheather, S. J.: A cautionary note on the method of least median squares. Amer. Statist. 46 (1992), 79-83. | DOI | MR
[31] Judge, G. G., Griffiths, W. E., Hill, R. C., Lutkepohl, H., Lee, T. C.: The Theory and Practice of Econometrics. Second edition. J. Wiley and Sons, New York 1985. | MR
[32] Jurečková, J.: Regression quantiles and trimmed least squares estimator under a general design. Kybernetika 20 (1984), 345-357. | MR | Zbl
[33] Kmenta, J.: Elements of Econometrics. Macmillan Publishing Company, New York 1986. | DOI | Zbl
[34] Krasker, W. S.: Two-stage bounded-influence estimators for simultaneous equations models. J. Business Econom. Statist. 4 (1986), 437-444. | DOI
[35] Krasker, W. S., Welsch, R. E.: Resistant estimation for simultaneous - equations models using weighted instrumental variables. Econometrica 53 (1985), 1475-1488. | DOI | MR | Zbl
[36] Krishnakumar, J., Ronchetti, E.: Robust-estimators for simultaneous equations models. J. Econometr. 78 (1997), 295-314. | DOI | MR | Zbl
[37] Lopuhaa, H. P.: On the relations between $S$-estimators and $M$-estimatros of multivariate location and covariance. Ann. Statist. 17 (1989), 1662-1683. | DOI | MR
[38] Maronna, R. A., Morgenthaler, S.: Robust regression through robust covariances. Comm. Statist. - Theory and Methods 15 (1986), 1347-1365. | DOI | MR | Zbl
[39] Maronna, R. A., Yohai, V. J.: Asymptotic behaviour of general $M$-estimates for regression and scale with random carriers. Zeitschrift fűr Wahrscheinlichkeitstheorie und verwandte Gebiete 58 (1981), 7-20. | DOI | MR
[40] Maronna, R. A., Yohai, V. J.: Robust estimation in simultaneous equations models. J. Statist. Planning Inference 57 (1997), 233-244. | DOI | MR | Zbl
[41] Mašíček, L.: Optimality of the least weighted squares estimator. Kybernetika 40 (2004), 715-734. | MR | Zbl
[42] Mizon, G. E.: A simple message for autocorrelation correctors: Don't. J. Econometr. 69 (1995), 267-288. | DOI | MR | Zbl
[43] Paige, C. C., Strakoš, Z.: Scaled total least squares fundamentals. Numer. Math. 91 (2002), 117-146. | DOI | MR | Zbl
[44] Phillips, P. C. B., Solo, V.: Asymptotics for linear processes. Ann. Statist. 20 (1992), 971-1001. | DOI | MR | Zbl
[45] Popper, K. R.: The Logic of Scientific Discovery. (Logik der Forscung, Springer, Vienna 1935). Hutchinson and co., New York 1952. | MR | Zbl
[46] Portnoy, S.: Tightness of the sequence of empiric c.d.f. processes defined from regression fractiles. In: Robust and Nonlinear Time - Series Analysis (J. Franke, W. H\H{a}rdle, and D. Martin, eds.), Springer Verlag, New York 1983, pp. 231-246. | DOI | MR | Zbl
[47] Rao, R. C.: Estimation of heteroscedastic variances in linear models. J. Amer. Statist. Assoc. 65 (1970), 161-172. | DOI | MR
[48] Rao, R. C.: Linear Statistical Inference and Its Applications. J. Wiley and Sons, New York 1973. | DOI | MR | Zbl
[49] Robinson, P. M.: Asymptotically efficient estimation in the presence of heteroskedasticity of unknown form. Econometrica 55 (1987), 875-891. | DOI | MR | Zbl
[50] Ronchetti, E., Trojani, F.: Robust inference with GMM estimators. J. Econometrics 101 (2001), 37-69. | DOI | MR | Zbl
[51] Rousseeuw, P. J.: Least median of square regression. J. Amer. Statist. Assoc. 79 (1984), 871-880. | DOI | MR
[52] Rousseeuw, P. J., Leroy, A. M.: Robust Regression and Outlier Detection. J. Wiley and Sons, New York 1987. | DOI | MR | Zbl
[53] Rousseeuw, P. J., Yohai, V.: Robust regressiom by means of $S$-estimators. In: Robust and Nonlinear Time Series Analysis (J. Franke, W. Härdle, and R. D. Martin, eds.), Lecture Notes in Statistics 26 Springer Verlag, New York 1984, pp. 256-272. | DOI | MR
[54] Štěpán, J.: Teorie pravděpodobnosti (Probability Theory). Academia, Praha 1987.
[55] Huffel, S. Van: Total least squares and error-in-variables modelling: Bridging the gap between statistics, computational mathematics and enginnering. In: Proc. Computational Statistics, COMPSTAT 2004 (J. Antoch, ed.), Physica Verlag/Springer, Heidelberg 2004, pp. 539-555. | DOI | MR
[56] Víšek, J. Á.: A cautionary note on the method of Least Median of Squares reconsidered. In: Trans. Twelfth Prague Conference on Information Theory, Statistical Decision Functions and Random Processes (P. Lachout, ed.), Academy of Sciences of the Czech Republic, Praha 1994, pp. 254-259.
[57] Víšek, J. Á.: Robust instruments. In: Robust'98 (J. Antoch and G. Dohnal, eds.), Union of Czech Mathematicians and Physicists, Matfyzpress, Praha 1998, pp. 195-224.
[58] Víšek, J. Á.: The robust regression and the experiences from its application on estimation of parameters in a dual economy. In: Proc. Conference Macromodels'99, Wroclaw University 1999, pp. 424-445.
[59] Víšek, J. Á.: Regression with high breakdown point. In: Robust 2000 (J. Antoch and G. Dohnal, eds.), Union of Czech Mathematicians and Physicists, Matfyzpress, Praha 2000, pp. 324-356.
[60] Víšek, J. Á.: The least weighted squares I. The asymptotic linearity of normal equations. Bull. Czech Econometr. Soc. 9 (2002), 31-58.
[61] Víšek, J. Á.: The least weighted squares II. Consistency and asymptotic normality. Bull. Czech Econometr. Soc. 9 (2002), 1-28. | MR
[62] Víšek, J. Á.: Development of the Czech export in nineties. In: Konsolidace vládnutí a podnikání v České republice a v Evropské unii I. Umění vládnout, ekonomika, politika, Matfyzpress, Praha 2003, pp. 193-220.
[63] Víšek, J. Á.: Robustifying instrumental variables. In: Proc. COMPSTAT'2004 (J. Antoch, ed.), Physica Verlag/Springer, pp. 1947-1954. | DOI | MR
[64] Víšek, J. Á.: Instrumental weighted variables - algorithm. In: Proc. COMPSTAT 2006 (A. Rizzi and M. Vichi, eds.), Physica Verlag/Springer, Heidelberg 2006, pp. 777-786. | DOI | MR
[65] Víšek, J. Á.: Kolmogorov-Smirnov statistics in multiple regression. In: Proc. ROBUST 2006 (J. Antoch and G. Dohnal, eds.), pp. 367-374.
[66] Víšek, J. Á.: Consistency of the instrumental weighted variables. Ann. Inst. Statist. Math. 61 (2009), 543-578. | DOI | MR | Zbl
[67] Víšek, J. Á.: Robust error - term - scale estimate. In: IMS Collections. Nonparametrics and Robustness in Modern Statistical Inference and Time Series Analysis: Festschrift for Jana Jurečková, 2010, pp. 254-267. | DOI | MR
[68] Víšek, J. Á.: Heteroscedasticity resistant robust covariance matrix estimator. Bull. Czech Econometric Society 17 (2010), 33-49.
[69] Víšek, J. Á.: Consistency of the least weighted squares under heteroscedasticity. Kybernetika 47 (2011), 179-206. | MR | Zbl
[70] Víšek, J. Á.: Weak $\sqrt{n}$ - consistency of the least weighted squares under heteroscedasticity. Acta Universitatis Carolinae, Mathematica et Physica 2 (2011), 51, 71-82. | MR | Zbl
[71] Víšek, J. Á.: Empirical distribution function under heteroscedasticity. Statistics 45 (2011), 497-508. | DOI | MR | Zbl
[72] Víšek, J. Á.: Robustifying estimation of the model with fixed and random effects. Part I - Theoretical considerations. Part II - Numerical study. Workshop on Algorithm for Outliers/regressors Selection organized by Bent Nielsen, Nuffield College, Oxford 2013. Methodology and Computing in Applied Probability 17 (2014), 4, 999-1014. | DOI
[73] Wagenvoort, R., Waldmann, R.: On $B$-robust instrumental variable estimation of the linear model with panel data. J. Econometr. 106 (2002), 297-324. | DOI | MR | Zbl
[74] White, H.: A heteroskedasticity - consistent covariance matrix estimator and a direct test for heteroscedasticity. Econometrica 48 (1980), 817-838. | DOI | MR
[75] Wooldridge, J. M.: Econometric Analysis of Cross Section and Panel Data. MIT Press, Cambridge 2001. (Second edition 2008.) | MR | Zbl
[76] Wooldridge, J. M.: Introductory Econometrics. A Modern Approach. MIT Press, Cambridge 2006. (Second edition 2009.)
Cité par Sources :