Keywords: control systems; homotopy of trajectories; covering semigroup
@article{10_14736_kyb_2016_6_0837,
author = {Ayala, V{\'\i}ctor and Kizil, Ey\"up},
title = {The covering semigroup of invariant control systems on {Lie} groups},
journal = {Kybernetika},
pages = {837--847},
year = {2016},
volume = {52},
number = {6},
doi = {10.14736/kyb-2016-6-0837},
mrnumber = {3607850},
zbl = {06707376},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2016-6-0837/}
}
TY - JOUR AU - Ayala, Víctor AU - Kizil, Eyüp TI - The covering semigroup of invariant control systems on Lie groups JO - Kybernetika PY - 2016 SP - 837 EP - 847 VL - 52 IS - 6 UR - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2016-6-0837/ DO - 10.14736/kyb-2016-6-0837 LA - en ID - 10_14736_kyb_2016_6_0837 ER -
Ayala, Víctor; Kizil, Eyüp. The covering semigroup of invariant control systems on Lie groups. Kybernetika, Tome 52 (2016) no. 6, pp. 837-847. doi: 10.14736/kyb-2016-6-0837
[1] Ayala, V.: Controllability of Nilpotent Systems. Banach Center Publications. Polish Academy of Sciences 32 (1995), 35-46. | DOI | MR | Zbl
[2] Ayala, V., Martin, L. San, Ribeiro, R.: Controllability on Sl(2,C) with restricted controls. SIAM J. Control Optim. 52 (2014), 2548-2567. | DOI | MR
[3] Bonnard, B., Jurdjevic, V., Kupka, I., Sallet, G.: Transitivity of families of invariant vector fields on semi-direct product of Lie groups. Trans. Amer. Math. Soc. 271 (1982), 521-535. | DOI
[4] Brockett, R.: System theory on groups and coset spaces. SIAM J. Control 1 (1972), 265-284. | DOI | MR
[5] Chen, K.: Integration of paths, geometric invariants and a generalized Baker-Hausdorff formula. Ann. Math. 65 (1975), 163-178. | DOI | MR | Zbl
[6] Colonius, F., Kizil, E., Martin, L. San: Covering space for monotonic homotopy of trajectories of control systems. J. Differential Equations 216 (2005), 324-353. | DOI | MR
[7] Dubins, L.: On curves of minimal lengths with a constrains on average curvature and with prescribed initial and terminal positions and tangents. Am. J. Math. 79 (1957), 3, 497. | DOI
[8] Hilgert, J., Hofmann, K., Lawson, J.: Controllability of systems on a nilpotent Lie group. Beitrage Algebra Geometrie 20 (1985), 185-190. | MR
[9] Isidori, A.: Nonlinear Control Systems. Springer-Verlag, 1995. | DOI | MR | Zbl
[10] Jurdjevic, V.: Geometric Control Theory. Cambridge University Press, 1997. | DOI | MR | Zbl
[11] Jurdjevic, V.: Optimal control problem on Lie groups: crossroads between geometry and mechanics. In: Geometry of Feedback and Optimal Control (B. Jakubczyk and W. Respondek, eds.), New York, Marcel Dekker 1997. | MR
[12] Jurdjevic, V., Kupka, I.: Control systems on semi-simple Lie groups and their homogeneous spaces. Ann. Inst. Fourier, Grenoble 31 (1981), 151-179. | DOI | MR | Zbl
[13] Jurdjevic, V., Sussmann, H.: Control systems on Lie groups. J. Differential Equations 12 (1972), 313-329. | DOI | MR | Zbl
[14] Lobry, C.: Controlabilite des systemes non lineaires. SIAM J. Control Optim. 8 (1970), 4, 573-605. | DOI | MR | Zbl
[15] Ljapin, E.: Semigroups. Trans. Math. Monographs 3, American Mathematical Society 1963. | DOI | MR
[16] Mittenhuber, D.: Controllability of systems on solvable Lie groups: the generic case. J. Dynam. Control Systems 7 (2001), 61-75. | DOI | MR | Zbl
[17] Sachkov, Y.L.: Controllability of right-invariant systems on solvable Lie groups. J. Dynam. Control Systems 3 (1997), 531-564. | DOI | MR | Zbl
[18] Sachkov, Y.L.: Controllability of invariant systems on Lie groups and homogeneous spaces. Dynamical systems 8, J. Math. Sci. (New York), 100 (2000), 4, 2355-2427. | DOI | MR | Zbl
[19] Martin, L. San, Tonelli, P.: Semigroup actions on homogeneous spaces. Semigroup Forum 14 (1994), 1-30. | MR
[20] Sussmann, H.: Lie brackets and local controllability: A sufficient condition for scalar-input systems. SIAM J. Control Optim. 21 (1983), 5, 686-713. | DOI | MR | Zbl
[21] Sussmann, H.: A general theorem on local controllability. SIAM J. Control Optim. 25 (1987), 158-194. | DOI | MR | Zbl
[22] Sussmann, H., Willems, C.: 300 years of optimal control: From the brachystochrone to the maximum principle. IEEE Constrol Systems Magazine 17 (1997), 3, 32-44. | DOI | Zbl
Cité par Sources :